如何在python中使用opencv实现一个颜色检测功能-创新互联
本文章向大家介绍如何在python中使用opencv实现一个颜色检测功能的基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。
罗江ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!Python主要用来做什么
Python主要应用于:1、Web开发;2、数据科学研究;3、网络爬虫;4、嵌入式应用开发;5、游戏开发;6、桌面应用开发。
1.首先需要确定待检测目标的HSV值
import cv2 img = cv2.imread('l3.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) def mouse_click(event, x, y, flags, para): if event == cv2.EVENT_LBUTTONDOWN: # 左边鼠标点击 print('PIX:', x, y) print("BGR:", img[y, x]) print("GRAY:", gray[y, x]) print("HSV:", hsv[y, x]) if __name__ == '__main__': cv2.namedWindow("img") cv2.setMouseCallback("img", mouse_click) while True: cv2.imshow('img', img) if cv2.waitKey() == ord('q'): break cv2.destroyAllWindows()
2.然后利用颜色检测,检测出指定目标
import numpy as np import cv2 font = cv2.FONT_HERSHEY_SIMPLEX lower_red = np.array([0, 127, 128]) # 红色阈值下界 higher_red = np.array([10, 255, 255]) # 红色阈值上界 lower_yellow = np.array([15, 230, 230]) # 黄色阈值下界 higher_yellow = np.array([35, 255, 255]) # 黄色阈值上界 lower_blue = np.array([85,240,140]) higher_blue = np.array([100,255,165]) frame=cv2.imread("l3.png") img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask_red = cv2.inRange(img_hsv, lower_red, higher_red) # 可以认为是过滤出红色部分,获得红色的掩膜 mask_yellow = cv2.inRange(img_hsv, lower_yellow, higher_yellow) # 获得绿色部分掩膜 mask_yellow = cv2.medianBlur(mask_yellow, 7) # 中值滤波 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波 mask_blue = cv2.inRange(img_hsv, lower_blue, higher_blue) # 获得绿色部分掩膜 mask_blue = cv2.medianBlur(mask_blue, 7) # 中值滤波 #mask = cv2.bitwise_or(mask_green, mask_red) # 三部分掩膜进行按位或运算 print(mask_red) cnts1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 轮廓检测 #红色 cnts2, hierarchy2 = cv2.findContours(mask_blue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 轮廓检测 #红色 cnts3, hierarchy3 = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in cnts1: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'red', (x, y - 5), font, 0.7, (0, 0, 255), 2) for cnt in cnts2: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'blue', (x, y - 5), font, 0.7, (0, 0, 255), 2) for cnt in cnts3: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'yellow', (x, y - 5), font, 0.7, (0, 255, 0), 2) cv2.imshow('frame', frame) cv2.waitKey(0) cv2.destroyAllWindows()
以上就是小编为大家带来的如何在python中使用opencv实现一个颜色检测功能的全部内容了,希望大家多多支持创新互联网站建设公司,!
新闻名称:如何在python中使用opencv实现一个颜色检测功能-创新互联
标题路径:http://pwwzsj.com/article/ccpogj.html