如何解决多元函数求极值问题-创新互联
如何解决多元函数求极值问题,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联长期为近千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为虎丘企业提供专业的网站制作、网站设计,虎丘网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。今天来讨论多元函数求极值问题,在Logistic回归用牛顿迭代法求参数会用到,所以很有必要把它研究清楚。
回想一下,一元函数求极值问题我们是怎样做的?比如对于凹函数,先求一阶导数,得,
由于极值处导数一定为零,但是导数等于零的点不一定就有极值,比如。所以还需要进一步判断,对
函数继续求二阶导得到,因为在驻点处二阶导数成立,所以
在处取得极小值,二阶导数在这里的意义就是判断函数局部的凹凸性。
在多元函数中求极值的方法类似,只是在判断凹凸性这里引入了一个矩阵,叫做Hessian矩阵。
如果实值多元函数在定义域内二阶连续可导,那么我们求它的极值,首先对所有求偏导,即
得到个方程如下
通过这个方程可以解得驻点,这个驻点是一个长度为的一维向量。但是我们仅仅得到这个驻点,其实在这
个驻点有3种情况,分别是:局部极大值,局部极小值和非极值。
所以接下来要做的事就是判断这个驻点属于这3个中的哪一个。所以就引入了Hessian矩阵,也就是说它用来
判断在多元函数的凹凸性问题。
Hessian矩阵是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率,常用于牛顿迭代法解决优化问题。
例如对于上面的多元函数,如果它的二阶偏导数都存在,那么Hessian矩阵如下
如果函数在定义域内二阶连续可导,那么的Hessian矩阵在定义域内为对称矩阵,因为如果函数连
续,则二阶偏导数的求导顺序没有区别,即
有了Hessian矩阵,我们就可以判断上述极值的3种情况了,结论如下
(1)如果是正定矩阵,则临界点处是一个局部极小值
(2)如果是负定矩阵,则临界点处是一个局部极大值
(3)如果是不定矩阵,则临界点处不是极值
接下来继续学习如何判断一个矩阵是否是正定的,负定的,还是不定的。
一个最常用的方法就是顺序主子式。实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。
由于这个方法涉及到行列式的计算,比较麻烦! 对于实二次型矩阵还有一个方法,描述如下
实二次型矩阵为正定二次型的充要条件是的矩阵的特征值全大于零。为负定二次型的充要条
件是的矩阵的特征值全小于零,否则是不定的。
看完上述内容,你们掌握如何解决多元函数求极值问题的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
文章题目:如何解决多元函数求极值问题-创新互联
网页网址:http://pwwzsj.com/article/cedjoi.html