python之matplotlib和pandas绘图的操作-创新互联

这篇文章主要介绍python之matplotlib和pandas绘图的操作,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

创新互联是一家集网站建设,黔西企业网站建设,黔西品牌网站建设,网站定制,黔西网站建设报价,网络营销,网络优化,黔西网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

python可以做什么

Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能强大,在许多领域中都有广泛的应用,例如最热门的大数据分析,人工智能,Web开发等。

不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用。这里记录一些统计作图方法,包括pandas作图和plt作图。

前提是先导入第三方库吧

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

然后以下这两句用于正常显示中文标签什么的。

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

当然还有一些最基本的步骤:

plt.xticks(x,xtk,size=12,rotation=50) #设置字体大小和字体倾斜度
plt.xlabel(u'城市') # x轴标签
plt.ylabel(u'数量')
plt.title(u'朋友所在城市') # 图的名称
plt.legend() # 正常显示标题
plt.show() # 显示图像
plt.close() # 绘图后养成习惯性的关掉

对于pandas中的二维数据框,可以直接作图(Series类型),简单的折线图或者曲线图如下:

sdata.plot(color='r', style='-o')
plt.show()

python之matplotlib和pandas绘图的操作

如果没有用pandas,直接作曲线图,可以这样写:

plot(x,y, color ='blue', linewidth=2.5, line)

1,柱状图

rects1=plt.bar(           #(x,data) 就是所要画的二维数据
    left=x,           #x 是X坐标轴数据,即每个块的x轴起始位置
    height=data,         #data是Y坐标轴的数据,即每个块的y轴高度
    width=[0.1,0.2,0.3],     #每一个块的显示宽度
    bottom=[1,2,3],       #每一个块的底部高度
    color='y',          #块的颜色
    edgecolor='g',        #块的边界颜色
    linewidth=2,         #块的线条宽度
    xerr=1,           #x轴误差bar
    yerr=1,           #y轴误差bar
    ecolor='r',         #误差bar的颜色
    capsize=1,          #误差bar的线条宽度
    orientation='vertical',   #块的方向 (horizontal,vertical)
    align="center",       #块的位置 (center, left, right)
    hold=None
    )
 
plt.show()

2,饼图

plot2=plt.pie(data,             # 每个饼块的实际数据,如果大于1,会进行归一化,计算percentage
    explode=[0.0,0.1,0.2],        # 每个饼块离中心的距离
    colors=['y','r','g'],        # 每个饼块的颜色
    labels=['women','men','unknown'],  # 每个饼块的标签
    labeldistance=1.2,          # 每个饼块标签到中心的距离
    autopct='%1.1f%%',         # 百分比的显示格式
    pctdistance=0.4,           # 百分比到中心的距离
    shadow=True,             # 每个饼块是否显示阴影
    startangle=0,            # 默认从x轴正半轴逆时针起
    radius=1.0              # 饼块的半径
    )
plt.axis('equal') # 显示为圆形,避免比例压缩为椭圆
plt.show()

3,共享X轴,Y轴左右轴标(帕累托分析图)

数据样例如下,名称为va,类型为Series,左边为职位名称,右边为数量:

sales     4140
technical   2720
support    2229
IT       1227
product_mng   902
marketing    858
RandD      787
accounting   767
hr       739
management   630

作图:

fr = pd.Series(va.values.cumsum() / va.values.sum())
va.plot(kind='bar')
fr.plot(color='r',secondary_y=True, style='-o')
plt.annotate(format(fr[7], '.2%'), xy=(7, fr[7]), xytext=(7*0.9, fr[7]*0.9),
       arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=.2')) # 用于注释图形指标
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
# plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# plt1 = plt.pie(va.values,
#        labels=va.index,
#        autopct='%1.1f%%')
plt.xticks(rotation=50) # 设置字体大小和字体倾斜度
plt.show()

左边为出现的频率,右边为累积百分比(这里数据以降序排列较好,便于直观地观察),效果如下:

python之matplotlib和pandas绘图的操作

在pandas中,曲线图可以直接画,比如data中有多个属性,可以直接使用data.plot()。使用plt,若各个属性需要共用XY轴,那么可以重复plot即可。

4,箱型图

使用pandas画箱型图简单方便,但是注释比较麻烦,可以用annotate添加异常点的注释。若使用之前的数据va,则先创建二维数据框再画图。如果有多个列为数字类型,那么可以画每个列的箱型图,这里只有一列数据,如下:

pd.DataFrame(va).boxplot()
plt.show()

python之matplotlib和pandas绘图的操作

使用plt直接进行作图:

plt.boxplot(data,labels=[],
     sym='o',whis=1.5)

其中,data可以是一维的,也可多维,若为多维则lables为每一维度的标签。sym为异常值的形状,whis为调节垂直线段的长度。效果如下:

python之matplotlib和pandas绘图的操作

5,多张图在一张画布中,即多个子图

使用plt:

plt.subplot(221)
plt.plot(x, y1,'r-', lw=2) 
plt.subplot(222)
plt.plot(x,y2)

使用pandas:

data.plot(subplots=True, color=['r','b'], style=['-o','-'])
plt.show()

排版方式有不同,pandas是垂直排列,plt可以自己指定位置。pandas效果如下:

python之matplotlib和pandas绘图的操作

补充:Python DataFrame 多条件筛选 使用&

我就废话不多说了,大家还是直接看代码吧~

DF6
Out[42]: 
 B C D
0 1 B 10.750
1 3 C 8.875
2 2 T 58.000
3 2 L 57.000
4 3 Y 46.000
DF6[(DF6.B>1) & (DF6.D > 10)]
Out[45]: 
 B C D
2 2 T 58.0
3 2 L 57.0
4 3 Y 46.0

以上是“python之matplotlib和pandas绘图的操作”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


当前文章:python之matplotlib和pandas绘图的操作-创新互联
文章路径:http://pwwzsj.com/article/dcggep.html