mysql服务器怎么调优 mysql服务端
mysql 参数调优(11)之innodb_buffer_pool_instances设置多个缓冲池实例
MySQL 5.5引入了缓冲实例作为减小内部锁争用来提高MySQL吞吐量的手段。在5.5版本这个对提升吞吐量帮助很小,然后在MySQL 5.6版本这个提升就非常大了,所以在MySQL5.5中你可能会保守地设置innodb_buffer_pool_instances=4,在MySQL 5.6和5.7中你可以设置为8-16个缓冲池实例。设置后观察会觉得性能提高不大,但在大多数高负载情况下,它应该会有不错的表现。对了,不要指望这个设置能减少你单个查询的响应时间。这个是在高并发负载的服务器上才看得出区别。比如多个线程同时做许多事情。
我们提供的服务有:网站设计、做网站、微信公众号开发、网站优化、网站认证、息县ssl等。为近千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的息县网站制作公司
5.7、8.0 下INNODB_BUFFER_POOL_INSTANCES默认为1,若mysql存在高并发和高负载访问,设置为1则会造成大量线程对BUFFER_POOL的单实例互斥锁竞争,这样会消耗一定量的性能的。
pool_instances 可以设置为cpu核心数,它的作用是:
1)对于缓冲池在数千兆字节范围内的系统,通过减少争用不同线程对缓存页面进行读写的争用,将缓冲池划分为多个单独的实例可以提高并发性。可以类比为 java中的 ThreadLocal 线程本地变量 就是为每个线程维护一个buffer pool实例,这样就不用去争用同一个实例了。相当于减少高并发下mysql对INNODB_BUFFER缓冲池的争用。
2)使用散列函数将存储在缓冲池中或从缓冲池读取的每个页面随机分配给其中一个缓冲池实例。每个缓冲池管理自己的空闲列表, 刷新列表, LRU和连接到缓冲池的所有其他数据结构,并受其自己的缓冲池互斥量保护。
mysql 参数调优(2)之设置重做日志文件的大小 innodb_log_file_size
我们知道redo log包括 buffer和log file的部分,这里的innodb_log_file_size是配置log file的大小的。
innodb_log_file_size这个选项是设置 redo 日志(重做日志)的大小。这个值的默认为5M,是远远不够的,在安装完mysql时需要尽快的修改这个值。如果对 Innodb 数据表有大量的写入操作,那么选择合适的 innodb_log_file_size 值对提升MySQL性能很重要。然而设置太大了,就会增加恢复的时间,因此在MySQL崩溃或者突然断电等情况会令MySQL服务器花很长时间来恢复。
由于事务日志相当于一个写缓冲,而小日志文件会很快的被写满,这时候就需要频繁地刷新到硬盘,速度就慢了。如果产生大量的写操作,MySQL可能就不能足够快地刷新数据,那么写性能将会降低。
大的日志文件,另一方面,在刷新操作发生之前给你足够的空间来使用。反过来允许InnoDB填充更多的页面。对于崩溃恢复 – 大的重做日志意味着在服务器启动前更多的数据需要读取,更多的更改需要重做,这就是为什么崩溃恢复慢了。
如果不配的后果:默认是5M,这是肯定不够的。
最后,让我们来谈谈如何找出重做日志的正确大小。
幸运的是,你不需要费力算出正确的大小,这里有一个经验法则:在服务器繁忙期间,检查重做日志的总大小是否够写入1-2小时。你如何知道InnoDB写入多少,使用下面方法可以统计60秒内地增量数据大小:
mysql show engine innodb status\G select sleep(60); show engine innodb status\G
Log sequence number 4631632062
...
Log sequence number 4803805448
mysql select (4803805448-4631632062) 60/1024/1024;
+--------------------------------------+
| (4803805448-4631632062) 60/1024/1024 |
+--------------------------------------+
| 9851.84017181 |
+--------------------------------------+
1 row in set (0.00 sec)
在这个60s的采样情况下,InnoDB每小时写入9.8GB数据。所以如果innodb_log_files_in_group没有更改(默认是2,是InnoDB重复日志的最小数字),然后设置innodb_log_file_size为10G,那么你实际上两个日志文件加起来有20GB,够你写两小时数据了。
更改innodb_log_file_size的难易程度和能设置多大取决于你现在使用的MySQL版本。特别地,如果你使用的是5.6之前的版本,你不能仅仅的更改变量,期望服务器会自动重启。
好了,下面是步骤:
1、在my点吸烟 f更改innodb_log_file_size
2、停止mysql服务器
3、删除旧的日志,通过执行命令rm -f /var/lib/mysql/ib_logfile*
4、启动mysql服务器 – 应该需要比之前长点的时间,因为需要创建新的事务日志。最后,需要注意的是,有些mysql版本(比如5.6.2)限制了重做日志大小为4GB。所以在你设置innodb_log_file_size为2G或者更多时,请先检查一下MySQL的版本这方面的限制。
mysql调优技巧 增加线程缓存大小
增加线程缓存大小
连接管理器线程处理服务器监听的网络接口上的客户端连接请求。连接管理器线程将每个客户端连接与专用于它的线程关联,该线程负责处理该连接的身份验证和所有请求处理。因此,线程和当前连接的客户端之间是一对一的比例。确保线程缓存足够大以容纳所有传入请求是非常重要的。
MySQL提供了许多与连接线程相关的服务器变量:
线程缓存大小由thread_cache_size系统变量决定。默认值为0(无缓存),这将导致为每个新连接设置一个线程,并在连接终止时需要处理该线程。如果希望服务器每秒接收数百个连接请求,那么应该将thread_cache_size设置的足够高,以便大多数新连接可以使用缓存线程。可以在服务器启动或运行时设置max_connections的值。
还应该监视缓存中的线程数(Threads_cached)以及创建了多少个线程,因为无法从缓存中获取线程(Threads_created)。关于后者,如果Threads_created继续以每分钟多于几个线程的增加,请考虑增加thread_cache_size的值。
使用MySQL show status命令显示MySQL的变量和状态信息。这里有几个例子:
Monyog线程缓存监测
Monyog提供了一个监控线程缓存的屏幕,名为“线程”。与MySQL线程相关的服务器变量映射到以下Monyog指标:
Monyog线程屏幕还包括“线程缓存命中率”指标。这是一个提示线程缓存命中率的指标。如果值较低,则应该考虑增加线程缓存。在状态栏以百分比形式显示该值;它的值越接近100%越好。
如果这些指标的值等于或超过指定值,则可以将每一个指标配置为发出警告和/或严重警报
超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者MySQL数据库索引一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my点吸烟 f或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.
网页名称:mysql服务器怎么调优 mysql服务端
转载来源:http://pwwzsj.com/article/ddsigep.html