死磕java集合之ConcurrentHashMap源码分析(一)-创新互联
前记,从这篇文章开始我们换一种学习的方式,彤哥先抛出问题,大家尝试着在脑海中回答这些问题,然后再进入我们的源码分析过程,最后彤哥再挑几个问题回答。
10多年专注成都网站制作,成都定制网页设计,个人网站制作服务,为大家分享网站制作知识、方案,网站设计流程、步骤,成功服务上千家企业。为您提供网站建设,网站制作,网页设计及定制高端网站建设服务,专注于成都定制网页设计,高端网页制作,对酒楼设计等多个领域,拥有多年的网站设计经验。开篇问题
(1)ConcurrentHashMap与HashMap的数据结构是否一样?
(2)HashMap在多线程环境下何时会出现并发安全问题?
(3)ConcurrentHashMap是怎么解决并发安全问题的?
(4)ConcurrentHashMap使用了哪些锁?
(5)ConcurrentHashMap的扩容是怎么进行的?
(6)ConcurrentHashMap是否是强一致性的?
(7)ConcurrentHashMap不能解决哪些问题?
(8)ConcurrentHashMap中有哪些不常见的技术值得学习?
简介
ConcurrentHashMap是HashMap的线程安全版本,内部也是使用(数组 + 链表 + 红黑树)的结构来存储元素。
相比于同样线程安全的HashTable来说,效率等各方面都有极大地提高。
各种锁简介
这里先简单介绍一下各种锁,以便下文讲到相关概念时能有个印象。
(1)synchronized
java中的关键字,内部实现为监视器锁,主要是通过对象监视器在对象头中的字段来表明的。
synchronized从旧版本到现在已经做了很多优化了,在运行时会有三种存在方式:偏向锁,轻量级锁,重量级锁。
偏向锁,是指一段同步代码一直被一个线程访问,那么这个线程会自动获取锁,降低获取锁的代价。
轻量级锁,是指当锁是偏向锁时,被另一个线程所访问,偏向锁会升级为轻量级锁,这个线程会通过自旋的方式尝试获取锁,不会阻塞,提高性能。
重量级锁,是指当锁是轻量级锁时,当自旋的线程自旋了一定的次数后,还没有获取到锁,就会进入阻塞状态,该锁升级为重量级锁,重量级锁会使其他线程阻塞,性能降低。
(2)CAS
CAS,Compare And Swap,它是一种乐观锁,认为对于同一个数据的并发操作不一定会发生修改,在更新数据的时候,尝试去更新数据,如果失败就不断尝试。
(3)volatile(非锁)
java中的关键字,当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。(这里牵涉到java内存模型的知识,感兴趣的同学可以自己查查相关资料)
volatile只保证可见性,不保证原子性,比如 volatile修改的变量 i,针对i++操作,不保证每次结果都正确,因为i++操作是两步操作,相当于 i = i +1,先读取,再加1,这种情况volatile是无法保证的。
(4)自旋锁
自旋锁,是指尝试获取锁的线程不会阻塞,而是循环的方式不断尝试,这样的好处是减少线程的上下文切换带来的开锁,提高性能,缺点是循环会消耗CPU。
(5)分段锁
分段锁,是一种锁的设计思路,它细化了锁的粒度,主要运用在ConcurrentHashMap中,实现高效的并发操作,当操作不需要更新整个数组时,就只锁数组中的一项就可以了。
(5)ReentrantLock
可重入锁,是指一个线程获取锁之后再尝试获取锁时会自动获取锁,可重入锁的优点是避免死锁。
其实,synchronized也是可重入锁。
源码分析
构造方法
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
public ConcurrentHashMap(Map extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
构造方法与HashMap对比可以发现,没有了HashMap中的threshold和loadFactor,而是改用了sizeCtl来控制,而且只存储了容量在里面,那么它是怎么用的呢?官方给出的解释如下:
(1)-1,表示有线程正在进行初始化操作
(2)-(1 + nThreads),表示有n个线程正在一起扩容
(3)0,默认值,后续在真正初始化的时候使用默认容量
(4)> 0,初始化或扩容完成后下一次的扩容门槛
至于,官方这个解释对不对我们后面再讨论。
添加元素
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key和value都不能为null
if (key == null || value == null) throw new NullPointerException();
// 计算hash值
int hash = spread(key.hashCode());
// 要插入的元素所在桶的元素个数
int binCount = 0;
// 死循环,结合CAS使用(如果CAS失败,则会重新取整个桶进行下面的流程)
for (Node[] tab = table;;) {
Node f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// 如果桶未初始化或者桶个数为0,则初始化桶
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果要插入的元素所在的桶还没有元素,则把这个元素插入到这个桶中
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
// 如果使用CAS插入元素时,发现已经有元素了,则进入下一次循环,重新操作
// 如果使用CAS插入元素成功,则break跳出循环,流程结束
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
// 如果要插入的元素所在的桶的第一个元素的hash是MOVED,则当前线程帮忙一起迁移元素
tab = helpTransfer(tab, f);
else {
// 如果这个桶不为空且不在迁移元素,则锁住这个桶(分段锁)
// 并查找要插入的元素是否在这个桶中
// 存在,则替换值(onlyIfAbsent=false)
// 不存在,则插入到链表结尾或插入树中
V oldVal = null;
synchronized (f) {
// 再次检测第一个元素是否有变化,如果有变化则进入下一次循环,从头来过
if (tabAt(tab, i) == f) {
// 如果第一个元素的hash值大于等于0(说明不是在迁移,也不是树)
// 那就是桶中的元素使用的是链表方式存储
if (fh >= 0) {
// 桶中元素个数赋值为1
binCount = 1;
// 遍历整个桶,每次结束binCount加1
for (Node e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
// 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
// 并退出循环
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
if ((e = e.next) == null) {
// 如果到链表尾部还没有找到元素
// 就把它插入到链表结尾并退出循环
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
// 如果第一个元素是树节点
Node p;
// 桶中元素个数赋值为2
binCount = 2;
// 调用红黑树的插入方法插入元素
// 如果成功插入则返回null
// 否则返回寻找到的节点
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
// 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
// 并退出循环
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// 如果binCount不为0,说明成功插入了元素或者寻找到了元素
if (binCount != 0) {
// 如果链表元素个数达到了8,则尝试树化
// 因为上面把元素插入到树中时,binCount只赋值了2,并没有计算整个树中元素的个数
// 所以不会重复树化
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
// 如果要插入的元素已经存在,则返回旧值
if (oldVal != null)
return oldVal;
// 退出外层大循环,流程结束
break;
}
}
}
// 成功插入元素,元素个数加1(是否要扩容在这个里面)
addCount(1L, binCount);
// 成功插入元素返回null
return null;
}
整体流程跟HashMap比较类似,大致是以下几步:
(1)如果桶数组未初始化,则初始化;
(2)如果待插入的元素所在的桶为空,则尝试把此元素直接插入到桶的第一个位置;
(3)如果正在扩容,则当前线程一起加入到扩容的过程中;
(4)如果待插入的元素所在的桶不为空且不在迁移元素,则锁住这个桶(分段锁);
(5)如果当前桶中元素以链表方式存储,则在链表中寻找该元素或者插入元素;
(6)如果当前桶中元素以红黑树方式存储,则在红黑树中寻找该元素或者插入元素;
(7)如果元素存在,则返回旧值;
(8)如果元素不存在,整个Map的元素个数加1,并检查是否需要扩容;
添加元素操作中使用的锁主要有(自旋锁 + CAS + synchronized + 分段锁)。
为什么使用synchronized而不是ReentrantLock?
因为synchronized已经得到了极大地优化,在特定情况下并不比ReentrantLock差。
未完待续~~
欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
当前文章:死磕java集合之ConcurrentHashMap源码分析(一)-创新互联
本文链接:http://pwwzsj.com/article/dgjche.html