如何利用DataFrame对数据进行筛选-创新互联
如何利用DataFrame对数据进行筛选?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
成都创新互联10多年成都定制网页设计服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,成都定制网页设计及推广,对门窗定制等多个行业拥有丰富的网站推广经验的网站建设公司。DataFrame筛选数据
python中pandas下的DataFrame是一个很不错的数据结构,附带了许多操作、运算、统计等功能。
如何从一个DataFrame中筛选中出一个元素呢。
以tushare返回的交易日信息为例。
df = ts.trade_cal()
数据如下:
calendarDate isOpen 0 1990/12/19 1 1 1990/12/20 1 2 1990/12/21 1 3 1990/12/22 0 4 1990/12/23 0 5 1990/12/24 1 6 1990/12/25 1 7 1990/12/26 1 8 1990/12/27 1 9 1990/12/28 1 10 1990/12/29 0 11 1990/12/30 0 12 1990/12/31 1 13 1991/1/1 0 14 1991/1/2 1 15 1991/1/3 1 16 1991/1/4 1 17 1991/1/5 0 18 1991/1/6 0 19 1991/1/7 1 20 1991/1/8 1 21 1991/1/9 1 22 1991/1/10 1 23 1991/1/11 1 24 1991/1/12 0 25 1991/1/13 0 26 1991/1/14 1 27 1991/1/15 1 28 1991/1/16 1 29 1991/1/17 1 ... ... ... 9845 2017/12/02 0 9846 2017/12/03 0 9847 2017/12/04 1 9848 2017/12/05 1 9849 2017/12/06 1 9850 2017/12/07 1 9851 2017/12/08 1 9852 2017/12/09 0 9853 2017/12/10 0 9854 2017/12/11 1 9855 2017/12/12 1 9856 2017/12/13 1 9857 2017/12/14 1 9858 2017/12/15 1 9859 2017/12/16 0 9860 2017/12/17 0 9861 2017/12/18 1 9862 2017/12/19 1 9863 2017/12/20 1 9864 2017/12/21 1 9865 2017/12/22 1 9866 2017/12/23 0 9867 2017/12/24 0 9868 2017/12/25 1 9869 2017/12/26 1 9870 2017/12/27 1 9871 2017/12/28 1 9872 2017/12/29 1 9873 2017/12/30 0 9874 2017/12/31 0
如何取出某个日期的信息呢。例如年底了,想知道除夕前最后一个交易日是哪天。此处使用筛选功能。
df[df.calendarDate=="2017/12/31"]
输出如下:
>>> df[df.calendarDate=="2017/12/31"] calendarDate isOpen 9874 2017/12/31 0 >>> df[df.icol(0)=="2017/12/11"] __main__:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i] calendarDate isOpen 9854 2017/12/11 1
注意一定要写上双等号一定要写上双等号一定要写上双等号。重要的事情说3遍。。。
因为如果是单等号,会报语法异常的。。。
loc函数
关于loc这个坑爹的函数的用法,咋说呢,不要被他的”纯以标签名来进行索引”迷惑了。因为如果你给Loc中的第一个参数一个str的话,极有可能返回的是一个异常,说不在index中。 。。。。
坑爹。。。。
这个loc的用法不是根据某个位置内容筛选的含义,仍然是对行、对列的一种筛选。比如你某行的索引自己设置标签啥的。。很让人一头雾水的设计。跟ix就是重复的。。。。
大多数情况下的应用场景就是还是用数字取行,用str取列。
比如loc[0:3,[“a”,”b”]]。取0到第3行(左闭右开,非整型值时左闭右闭。。。),”a”列与”b”列。
看完上述内容,你们掌握如何利用DataFrame对数据进行筛选的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
分享题目:如何利用DataFrame对数据进行筛选-创新互联
本文地址:http://pwwzsj.com/article/dgjhhh.html