JavaScript中的number有什么用-创新互联
这篇文章给大家分享的是有关JavaScript中的number有什么用的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。
成都创新互联公司主要从事成都网站设计、网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务疏勒,十余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792声明:需要读者对二进制有一定的了解
对于 JavaScript 开发者来说,或多或少都遇到过 js 在处理数字上的奇怪现象,比如:
> 0.1 + 0.2 0.30000000000000004 > 0.1 + 1 - 1 0.10000000000000009 > 0.1 * 0.2 0.020000000000000004 > Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚JavaScript 是怎样编码数字的。
1. JavaScript 是怎样编码数字的
JavaScript 中的数字,不管是整数、小数、分数,还是正数、负数,全部是浮点数,都是用 8 个字节(64 位)来存储的。
一个数字(如12
、0.12
、-999
)在内存中占用 8 个字节(64 位),存储方式如下:
0 - 51
:分数部分(52 位)52 - 62
:指数部分(11 位)63
:符号位(1 位:0 表示这个数是正数,1 表示这个数是负数)
符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。
其他两部分是分数部分和指数部分,用于计算一个数的绝对值。
1.1 绝对值计算公式
1: abs = 1.f * 2 ^ (e - 1023) 0 < e < 2047 2: abs = 0.f * 2 ^ (e - 1022) e = 0, f > 0 3: abs = 0 e = 0, f = 0 4: abs = NaN e = 2047, f > 0 5: abs = ∞ (infinity, 无穷大) e = 2047, f = 0
说明:
这个公式是二进制的算法公式,结果用
abs
表示,分数部分用f
表示,指数部分用e
表示2 ^ (e - 1023)
表示2
的e - 1023
次方因为分数部分占 52 位,所以
f
的取值范围为00...00
(中间省略 48 个 0) 到11...11
(中间省略 48 个 1)因为指数部分占 11 位,所以
e
的取值范围为0
(00000000000
) 到2047
(11111111111
)
从上面的公式可以看出:
1
的存储方式:1.00 * 2 ^ (1023 - 1023)
(f = 0000..., e = 1023
,...
表示 48 个 0)2
的存储方式:1.00 * 2 ^ (1024 - 1023)
(f = 0000..., e = 1024
,...
表示 48 个 0)9
的存储方式:1.01 * 2 ^ (1025 - 1023)
(f = 0100..., e = 1025
,...
表示 48 个 0)0.5
的存储方式:1.00 * 2 ^ (1022 - 1023)
(f = 0000..., e = 1022
,...
表示 48 个 0)0.625
的存储方式:1.01 * 2 ^ (1021 - 1023)
(f = 0100..., e = 1021
,...
表示 48 个 0)
从上面的公式可以看出:
1.2.10 < e < 2047
当0 < e < 2047
时,取值范围为:f = 0, e = 1
到f = 11...11, e = 2046
(中间省略 48 个 1)
即:Math.pow(2, -1022)
到~= Math.pow(2, 1024) - 1
(~=
表示约等于)
这当中,~= Math.pow(2, 1024) - 1
就是Number.MAX_VALUE
的值,js
所能表示的大数值。
e = 0, f > 0
当e = 0, f > 0
时,取值范围为:f = 00...01, e = 0
(中间省略 48 个 0) 到f = 11...11, e = 0
(中间省略 48 个 1)
即:Math.pow(2, -1074)
到~= Math.pow(2, -1022)
(~=
表示约等于)
这当中,Math.pow(2, -1074)
就是Number.MIN_VALUE
的值,js
所能表示的最小数值(绝对值)。
e = 0, f = 0
这只表示一个值0
,但加上符号位,所以有+0
与-0
。
但在运算中:
> +0 === -0 true1.2.4
e = 2047, f > 0
这只表示一种值NaN
。
但在运算中:
> NaN == NaN false > NaN === NaN false1.2.5
e = 2047, f = 0
这只表示一个值∞
(infinity, 无穷大)。
在运算中:
> Infinity === Infinity true > -Infinity === -Infinity true1.3 绝对值的大安全值
从上面可以看出,8 个字节能存储的大数值是Number.MAX_VALUE
的值,也就是~= Math.pow(2, 1024) - 1
。
但这个数值并不安全:从1
到Number.MAX_VALUE
中间的数字并不连续,而是离散的。
比如:Number.MAX_VALUE - 1
,Number.MAX_VALUE - 2
等数值都无法用公式得出,就存储不了。
所以这里引出了大安全值Number.MAX_SAFE_INTEGER
,也就是从1
到Number.MAX_SAFE_INTEGER
中间的数字都是连续的,处在这个范围内的数值计算都是安全的。
当f = 11...11, e = 1075
(中间省略 48 个 1)时,取得这个值111...11
(中间省略 48 个 1),即Math.pow(2, 53) - 1
。
大于Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1
的数值都是离散的。
比如:Math.pow(2, 53) + 1
,Math.pow(2, 53) + 3
不能用公式得出,无法存储在内存中。
所以才会有文章开头的现象:
> Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
因为Math.pow(2, 53) + 1
不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数,Math.pow(2, 53)
,然后存储在内存中,这就是失真,即不安全。
小数中,除了满足m / (2 ^ n)
(m, n
都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。
(注:[2]
表示二进制,^
表示 N 次方)
0.5 = 1 / 2 = [2]0.1 0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
# 0.3 的逼近 0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10) 0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111) 0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111) ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011 (f = 0011001100110011001100110011001100110011001100110011, e = 1021)
从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足m / (2 ^ n)
的小数)可以直接比较大小,其他的都不能直接比较。
> 0.5 + 0.125 === 0.625 true > 0.1 + 0.2 === 0.3 false
为了安全的比较两个小数,引入Number.EPSILON [Math.pow(2, -52)]
来比较浮点数。
> Math.abs(0.1 + 0.2 - 0.3) < Number.EPSILON true1.5 小数大保留位数
js
从内存中读取一个数时,大保留17
位有效数字。
> 0.010011001100110011001100110011001100110011001100110011 0.30000000000000000 0.3
> 0.010011001100110011001100110011001100110011001100110010 0.29999999999999993
> 0.010011001100110011001100110011001100110011001100110100 0.30000000000000004
> 0.0000010100011110101110000101000111101011100001010001111100 0.0200000000000000042. Number 对象中的常量2.1 Number.EPSILON
表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。
Math.pow(2, -52)
用于浮点数之间安全的比较大小。
2.2 Number.MAX_SAFE_INTEGER绝对值的大安全值。
Math.pow(2, 53) - 12.3 Number.MAX_VALUE
js
所能表示的大数值(8 个字节能存储的大数值)。
~= Math.pow(2, 1024) - 12.4 Number.MIN_SAFE_INTEGER
最小安全值(包括符号)。
-(Math.pow(2, 53) - 1)2.5 Number.MIN_VALUE
js
所能表示的最小数值(绝对值)。
Math.pow(2, -1074)2.6 Number.NEGATIVE_INFINITY
负无穷大。
-Infinity2.7 Number.POSITIVE_INFINITY
正无穷大。
+Infinity2.8 Number.NaN
非数字。
3. 寻找奇怪现象的原因3.1 为什么0.1 + 0.2
结果是0.30000000000000004
与0.3
的逼近算法类似。
0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1019) 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1020)
0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111 (f = 00110011001100110011001100110011001100110011001100111, e = 1021)
但f = 00110011001100110011001100110011001100110011001100111
有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:
0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100 (f = 0011001100110011001100110011001100110011001100110100, e = 1021)
js
读取这个数字为0.30000000000000004
Math.pow(2, 53) + 1
结果是Math.pow(2, 53)
因为Math.pow(2, 53) + 1
不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。
比这个数小的、最靠近的数:
Math.pow(2, 53) (f = 0000000000000000000000000000000000000000000000000000, e = 1076)
比这个数大的、最靠近的数:
Math.pow(2, 53) + 2 (f = 0000000000000000000000000000000000000000000000000001, e = 1076)
取第一个数:Math.pow(2, 53)
。
所以:
> Math.pow(2, 53) + 1 === Math.pow(2, 53) true
感谢各位的阅读!关于JavaScript中的number有什么用就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!
分享名称:JavaScript中的number有什么用-创新互联
文章起源:http://pwwzsj.com/article/dhhchd.html