学习Python可能遇到的问题-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

在达川等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站建设、成都做网站 网站设计制作按需制作,公司网站建设,企业网站建设,品牌网站建设,全网营销推广,成都外贸网站制作,达川网站建设费用合理。

小编给大家分享一下学习Python可能遇到的问题,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

Python是一种非常富有表现力的语言。它为我们提供了一个庞大的标准库和许多内置模块,帮助我们快速完成工作。然而,许多人可能会迷失在它提供的功能中,不能充分利用标准库,过度重视单行脚本,以及误解Python基本结构等。本文是一个关于Python新手可能会陷入的一些陷阱的不完全列表。

1.不知道Python版本

这是一个在StackOverflow上反复出现的问题。许多人能写出在某个版本上完美工作的代码,但在他们在自己的系统上安装有不同版本的Python。要确保你知道你正在使用的Python版本。

你可以通过下边的代码查看Python版本:

[pythontab@testServer]$ python --version
Python 2.7.10
[pythontab@testServer]$ python --V
Python 2.7.10

上面两种方法都是可以的

2.不使用版本管理器

pyenv是一个极好的管理不同Python版本的工具,但很不幸,它只工作在*nix系统上。在Mac系统上,你可以简单地通过brew install pyenv安装它,在Linux上,也有一个自动安装程序。

3.沉迷于一行程序

许多人热衷于一行程序带来的兴奋感。即使他们的一行解决方案比一个多行解决方案低效,他们也会吹嘘。

Python中的一行程序在本质上意味着具有多个表达式的复杂推导。例如:

l = [m for a, b in zip(this, that) if b.method(a) != b for m in b if not m.method(a, b) and 
reduce(lambda x, y: a + y.method(), (m, a, b))]

老实讲,我编造了上面的例子。但我看到很多人都写类似的代码。这样的代码在一个星期后就会变得难以理解。如果你想做一些稍微复杂的事情,例如根据条件简单地在一个列表或集合中添加一个元素,你可能就会犯错误。

单行代码并不是什么成就,是的,他们可能看起来很灵活,但不是什么成就。想象一下,这就像是你在打扫房间时把所有的东西都塞进你的衣橱。好的代码应该是干净的,易于阅读的和高效的。

4.利用错误的方式初始化一个集合

这是一个更微妙的问题,可能让你措手不及。集合推导很像列表推导。

>>> { n for n in range(10) if n % 2 == 0 }
{0, 8, 2, 4, 6}
>>> type({ n for n in range(10) if n % 2 == 0 })

上面就是集合推导的一个例子。集合就像列表,也是一个容器。所不同的是,一个集合中不能有任何重复的值,而且是无序的。看到集合推导人们经常错误地认为{}能初始化一个空集合。但其实不然,它初始化一个空字典。

>>> {}
{}
>>> type({})

如果你想初始化一个空集合,可以简单地调用set()方法。

>>> set()
set()
>>> type(set())

注意一个空集合用set()表示,但是一个包含一些元素的集合就就要用花括号包围元素来表示。

>>> s = set()
>>> s
set()
>>> s.add(1)
>>> s
{1}
>>> s.add(2)
>>> s
{1, 2}

这和直觉是相反的,因为你期望类似于set([1, 2])的一些东西。

5.误解GIL

GIL(全局解释器锁)意味着在Python程序中,任意一个时间点只能有一个线程在运行。这意味着当我们创建一个线程并希望它并行运行时,它并不会那样。Python解释器实际的工作是在不同的运行线程之间快速进行切换。但这只是对实际发生事情的一个非常简单的解释,实际情况要复杂的多。有很多种并行运行的实例,例如使用本质为C扩展的各种库。但运行Python代码时,大部分时间里它不会并行执行。换句话说,Python中的线程并不像Java或C++中的线程。

许多人会尝试为Python辩解,说这些都是真正的线程。这确实是真的,但并不能改变这样一个事实:Python处理线程的方式和你期望的方式是不同的。Ruby语言也有相同的情况(Ruby也有一个解释器锁)。

指定的解决方案是使用multiprocessing模块。multiprocessing模块提供Process类,它是一个对fork的很好的覆盖。然而,fork过程比一个线程的代价高得多,所以你可能不会每次都能看到性能上的提升,因为不同的process之间需要做大量的工作来进行相互协调。

然而,这个问题并不存在于每一个Python的实现版本中。例如,Python的一个实现PyPy-stm就试图摆脱GIL(仍未稳定)。建立在其他平台,如JVM(Jython)或CLR(IronPython),上的Python实现,也没有GIL的问题。

总之,使用Thread类时要多加小心,你得到的可能不是你想要的。

6.使用旧式类

在Python 2中,有两种类型的类,分别为“旧式”类和“新式”类。如果你使用Python 3,那么你默认使用“新式”类。为了确保在Python2中使用“新式”类,你需要让你新创建的每一个类都继承object类,且类不能已继承了内置类型,例如int或list。换句话说,你的基类、类如果不继承其他类,就总是需要继承object类。

class MyNewObject(object):
# stuff here

7.按错误的方式迭代

对于这门语言的新手来说,下边的代码是非常常见的:

for name_index in range(len(names)):
print(names[name_index])

在上边的例子中,没有必须调用len函数,因为列表迭代实际上要简单得多:

for name in names:
print(name)

此外,还有一大堆其他的工具帮助你简化迭代。例如,可以使用zip同时遍历两个列表:

for cat, dog in zip(cats, dogs):
print(cat, dog)

如果你想同时考虑列表变量的索引和值,可以使用enumerate:

for index, cat in enumerate(cats):
print(cat, index)

在itertools中也有很多有用的函数供你选择。然而请注意,使用itertools函数并不总是正确的选择。如果itertools中的一个函数为你试图解决的问题提供了一个非常方便的解决办法,例如铺平一个列表或根据给定的列表创建一个其内容的排列,那就用它吧。但是不要仅仅因为你想要它而去适应你代码的一部分。

滥用itertools引发的问题出现的过于频繁,以至于在StackOverflow上一个德高望重的Python贡献者已经贡献他们资料的重要组成部分来解决这些问题。

8.使用可变的默认参数

我多次见到过如下的代码:

def foo(a, b, c=[]):
# append to c
# do some more stuff

永远不要使用可变的默认参数,可以使用如下的代码代替:

def foo(a, b, c=None):
if c is None:
c = []
# append to c
# do some more stuff

与其解释这个问题是什么,不如展示下使用可变默认参数的影响:

>>> def foo(a, b, c=[]):
... c.append(a)
... c.append(b)
... print(c)
...
>>> foo(1, 1)
[1, 1]
>>> foo(1, 1)
[1, 1, 1, 1]
>>> foo(1, 1)
[1, 1, 1, 1, 1, 1]

同一个变量c在函数调用的每一次都被反复引用。这可能有一些意想不到的后果。 

看完了这篇文章,相信你对学习Python可能遇到的问题有了一定的了解,想了解更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道,感谢各位的阅读!


新闻标题:学习Python可能遇到的问题-创新互联
转载来源:http://pwwzsj.com/article/dhospe.html