Shuffle流程是怎样的-创新互联
本篇内容介绍了“Shuffle流程是怎样的”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
公司主营业务:网站建设、成都网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出西城免费做网站回馈大家。在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。Spark作为MapReduce框架的一种实现,也实现了shuffle的逻辑。
Shuffle
Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。
下面这幅图清晰地描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间。
概念上shuffle就是一个沟通数据连接的桥梁,那么实际上shuffle(partition)这一部分实现的机制如下。
1、Spark Shuffle
以图为例简单描述一下Spark中shuffle的整一个流程:
l 首先每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M×RM×R,其中MM是Map的个数,RR是Reduce的个数。
l 其次Mapper产生的结果会根据设置的partition算法填充到每个bucket中去。这里的partition算法是可以自定义的,当然默认的算法是根据key哈希到不同的bucket中去。
l 当Reducer启动时,它会根据自己task的id和所依赖的Mapper的id从远端或是本地的block manager中取得相应的bucket作为Reducer的输入进行处理。
这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。
Apache Spark 的 Shuffle 过程与 Apache Hadoop 的 Shuffle 过程有着诸多类似,一些概念可直接套用,例如,Shuffle 过程中,提供数据的一端,被称作 Map 端,Map 端每个生成数据的任务称为 Mapper,对应的,接收数据的一端,被称作 Reduce 端,Reduce 端每个拉取数据的任务称为 Reducer,Shuffle 过程本质上都是将 Map 端获得的数据使用分区器进行划分,并将数据发送给对应的 Reducer 的过程。
2、Shuffle Write
在Spark 0.6和0.7的版本中,对于shuffle数据的存储是以文件的方式存储在block manager中,与rdd.persist(StorageLevel.DISk_ONLY)采取相同的策略,可以参看:
可以看到Spark在每一个Mapper中为每个Reducer创建一个bucket,并将RDD计算结果放进bucket中。需要注意的是每个bucket是一个ArrayBuffer,也就是说Map的输出结果是会先存储在内存。
接着Spark会将ArrayBuffer中的Map输出结果写入block manager所管理的磁盘中,这里文件的命名方式为:shuffle_ + shuffle_id + "_" + map partition id + "_" + shuffle partition id。
早期的shuffle write有两个比较大的问题:
l Map的输出必须先全部存储到内存中,然后写入磁盘。这对内存是一个非常大的开销,当内存不足以存储所有的Map output时就会出现OOM。
l 每一个Mapper都会产生Reducer number个shuffle文件,如果Mapper个数是1k,Reducer个数也是1k,那么就会产生1M个shuffle文件,这对于文件系统是一个非常大的负担。同时在shuffle数据量不大而shuffle文件又非常多的情况下,随机写也会严重降低IO的性能。
在Spark 0.8版本中,shuffle write采用了与RDD block write不同的方式,同时也为shuffle write单独创建了ShuffleBlockManager,部分解决了0.6和0.7版本中遇到的问题。
首先来看一下Spark 0.8的具体实现:
在这个版本中为shuffle write添加了一个新的类ShuffleBlockManager,由ShuffleBlockManager来分配和管理bucket。同时ShuffleBlockManager为每一个bucket分配一个DiskObjectWriter,每个write handler拥有默认100KB的缓存,使用这个write handler将Map output写入文件中。可以看到现在的写入方式变为buckets.writers(bucketId).write(pair),也就是说Map output的key-value pair是逐个写入到磁盘而不是预先把所有数据存储在内存中在整体flush到磁盘中去。
ShuffleBlockManager的代码如下所示:
Spark 0.8显著减少了shuffle的内存压力,现在Map output不需要先全部存储在内存中,再flush到硬盘,而是record-by-record写入到磁盘中。同时对于shuffle文件的管理也独立出新的ShuffleBlockManager进行管理,而不是与rdd cache文件在一起了。
但是这一版Spark 0.8的shuffle write仍然有两个大的问题没有解决:
l 首先依旧是shuffle文件过多的问题,shuffle文件过多一是会造成文件系统的压力过大,二是会降低IO的吞吐量。
l 其次虽然Map output数据不再需要预先在内存中evaluate显著减少了内存压力,但是新引入的DiskObjectWriter所带来的buffer开销也是一个不容小视的内存开销。假定有1k个Mapper和1k个Reducer,那么就会有1M个bucket,于此同时就会有1M个write handler,而每一个write handler默认需要100KB内存,那么总共需要100GB的内存。这样的话仅仅是buffer就需要这么多的内存,内存的开销是惊人的。当然实际情况下这1k个Mapper是分时运行的话,所需的内存就只有cores * reducer numbers * 100KB大小了。但是reducer数量很多的话,这个buffer的内存开销也是蛮厉害的。
为了解决shuffle文件过多的情况,Spark 0.8.1引入了新的shuffle consolidation,以期显著减少shuffle文件的数量。
首先以图例来介绍一下shuffle consolidation的原理。
假定该job有4个Mapper和4个Reducer,有2个core,也就是能并行运行两个task。可以算出Spark的shuffle write共需要16个bucket,也就有了16个write handler。在之前的Spark版本中,每一个bucket对应的是一个文件,因此在这里会产生16个shuffle文件。
而在shuffle consolidation中每一个bucket并非对应一个文件,而是对应文件中的一个segment,同时shuffle consolidation所产生的shuffle文件数量与Spark core的个数也有关系。在上面的图例中,job的4个Mapper分为两批运行,在第一批2个Mapper运行时会申请8个bucket,产生8个shuffle文件;而在第二批Mapper运行时,申请的8个bucket并不会再产生8个新的文件,而是追加写到之前的8个文件后面,这样一共就只有8个shuffle文件,而在文件内部这有16个不同的segment。因此从理论上讲shuffle consolidation所产生的shuffle文件数量为C×R,其中C是Spark集群的core number,R是Reducer的个数。
需要注意的是当 M=C时shuffle consolidation所产生的文件数和之前的实现是一样的。
Shuffle consolidation显著减少了shuffle文件的数量,解决了之前版本一个比较严重的问题,但是writer handler的buffer开销过大依然没有减少,若要减少writer handler的buffer开销,只能减少Reducer的数量,但是这又会引入新的问题,下文将会有详细介绍。
3、Shuffle Fetch and Aggregator
Shuffle write写出去的数据要被Reducer使用,就需要shuffle fetcher将所需的数据fetch过来,这里的fetch包括本地和远端,因为shuffle数据有可能一部分是存储在本地的。Spark对shuffle fetcher实现了两套不同的框架:NIO通过socket连接去fetch数据;OIO通过netty server去fetch数据。分别对应的类是BasicBlockFetcherIterator和NettyBlockFetcherIterator。
在Spark 0.7和更早的版本中,只支持BasicBlockFetcherIterator,而BasicBlockFetcherIterator在shuffle数据量比较大的情况下performance始终不是很好,无法充分利用网络带宽,为了解决这个问题,添加了新的shuffle fetcher来试图取得更好的性能。都知道在hadoop MapReduce的shuffle过程中,shuffle fetch过来的数据会进行merge sort,使得相同key下的不同value按序归并到一起供Reducer使用,这个过程可以参看下图:
所有的merge sort都是在磁盘上进行的,有效地控制了内存的使用,但是代价是更多的磁盘IO。
那么Spark是否也有merge sort呢?
首先虽然Spark属于MapReduce体系,但是对传统的MapReduce算法进行了一定的改变。Spark假定在大多数用户的case中,shuffle数据的sort不是必须的,比如word count,强制地进行排序只会使性能变差,因此Spark并不在Reducer端做merge sort。既然没有merge sort那Spark是如何进行reduce的呢?
在Spark中存在aggregator,aggregator本质上是一个hashmap,它是以map output的key为key,以任意所要combine的类型为value的hashmap。当在做word count reduce计算count值的时候,它会将shuffle fetch到的每一个key-value pair更新或是插入到hashmap中(若在hashmap中没有查找到,则插入其中;若查找到则更新value值)。这样就不需要预先把所有的key-value进行merge sort,而是来一个处理一个,省下了外部排序这一步骤。但同时需要注意的是reducer的内存必须足以存放这个partition的所有key和count值,因此对内存有一定的要求。
在上面word count的例子中,因为value会不断地更新,而不需要将其全部记录在内存中,因此内存的使用还是比较少的。考虑一下如果是group by key这样的操作,Reducer需要得到key对应的所有value。在Hadoop MapReduce中,由于有了merge sort,因此给予Reducer的数据已经是group by key了,而Spark没有这一步,因此需要将key和对应的value全部存放在hashmap中,并将value合并成一个array。可以想象为了能够存放所有数据,用户必须确保每一个partition足够小到内存能够容纳,这对于内存是一个非常严峻的考验。因此Spark文档中建议用户涉及到这类操作的时候尽量增加partition,也就是增加Mapper和Reducer的数量。
增加Mapper和Reducer的数量固然可以减小partition的大小,使得内存可以容纳这个partition。但是在shuffle write中提到,bucket和对应于bucket的write handler是由Mapper和Reducer的数量决定的,task越多,bucket就会增加的更多,由此带来write handler所需的buffer也会更多。在一方面为了减少内存的使用采取了增加task数量的策略,另一方面task数量增多又会带来buffer开销更大的问题,因此陷入了内存使用的两难境地。
为了减少内存的使用,只能将aggregator的操作从内存移到磁盘上进行,Spark社区也意识到了Spark在处理数据规模远远大于内存大小时所带来的问题。因此PR303提供了外部排序的实现方案。
“Shuffle流程是怎样的”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联-成都网站建设公司网站,小编将为大家输出更多高质量的实用文章!
当前题目:Shuffle流程是怎样的-创新互联
网站链接:http://pwwzsj.com/article/dijepi.html