python画3D隐函数 python求隐函数
用Python画图
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
十多年的尚义网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都营销网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整尚义建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“尚义网站设计”,“尚义网站推广”以来,每个客户项目都认真落实执行。
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
python 能画隐函数的曲面吗
可以的。这也算多态的一种,比如: def duck(A):return A.duck() class pop():def duck():return "what does the duck say~" class regular():def duck():return "Quack!" duck(pop)'what does the duck s
不能直接写出函数的表达式 怎么在python里画函数图象呢?
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
Python Matplotlib画图
主要用于作图、可视化问题
pip install matplotlib
导入模块 pyplot 和 pylab ,可以参考下面链接观察两者区别:
(说白了就是pylay=pyplot+numpy)
输入这三行解决
主要使用 plot() 来展示,里面前两个参数代表 x , y 坐标(注意x,y数量要一样),第三个参数可以用来设置散点图( 'o' )或者颜色、线条形式等各种样式,并且第三个参数可以同时传入多个,比如要红色的散点图就: '0r'
(1)颜色样式:
(2)线条样式:
(3)点的样式:
(4)坐标区间:
或者分别设置x、y的区间:
注:
设置点的样式时默认就是散点图,以及同类样式只能设置一个(比如不能设置两种颜色),并且还可以把多个图集合在一起展示,那就多 plot 几个,plot就相当于一个画布,每plot一个就相当于在上面画一张图,再弄就继续在上面画
主要用 hist() 来显示,实现方式很简单,把一组数据放入括号里就行了,例如随机生成一堆正态分布的数,然后直方图显示:
其中如果要设置直方图格式(宽度、上下限、是否要轮廓)可以这样:
注:
直方图和折线图这些不太一样,折线图是传入两个等长数据,然后每个x、y坐标一一对应展示出来。而直方图是:第一个参数代表你传入的所有数据,第二个参数代表你传入的x轴范围,然后直方图会将第一个参数里传入的数据一个个计算在某个范围内含有的数据量,因此传入的两个参数数据不一定要等长,例如下面的例子:
结果如图:
可以看出数据被自动分配到对应的范围内上了
使用 subplot(row, col, area) :三个参数分别是行数、列数和区域,比如要将原图分成2行2列(切成4份),然后要左下角那个图就:
如果想4个图都显示就4个 subplot ,分别1、2、3、4就行了,然后在各图的subplot之后写的都是每个图的内容,现在我们试试弄一个2行,第一行两列的图片(想象下鼠标的样子),而且分别是不同的内容:
注:
labels 、 sizes 、 colors 和 explode 的长度都要一样
1.导入3D图相关模块:
2.将画图板加到3D模块里,然后加入数据即可:
3D散点图举例:
通过 imread() 读取,举例:
当前文章:python画3D隐函数 python求隐函数
地址分享:http://pwwzsj.com/article/docjooj.html