Python中滤波函数 python滤波器信号处理

python如何实现类似matlab的小波滤波?

T=wpdec(y,5,'db40');

在兴山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站建设、做网站 网站设计制作定制设计,公司网站建设,企业网站建设,成都品牌网站建设,营销型网站,外贸营销网站建设,兴山网站建设费用合理。

%信号y进行波包解层数5T波树plot看

a10=wprcoef(T,[1,0]);

%a10节点[1,0]进行重构信号貌似没层重构说吧能某层某节点进行重构节点编号波树

%以下为滤波程序(主要调节参数c的大小)

c=10;

wn=0.1;

fs=50000; %采样频率;

b=fir1(c,wn/(fs/2),hamming(c+1));

y1=filtfilt(b,1,y);%对y滤波。

python中的filter函数怎么用

python filter内建函数

filter函数是python内建函数,可以操作任何可迭代类型,如list,tuple,string.

filter需要带上一个函数function和一个可迭代序列作为参数。filter()将调用该function作用于每一个可迭代序列的元素,并返回一个由该function验证后返回值为true的元素组成新的可迭代序列,新序列的类型保持与filter参数序列的类型一致

2.filter与数字

下面用这个例子来说明:

#建个数字列表

numbers = [1,5,9,8,4,6,3,7]

#定义一个过滤标准,取小于5的数

def lessThanFive(element):

return element  5

print filter(lessThanFive, numbers)

输出结果是列表:[1,4,3]

解说:此处的过滤函数lessThanFive必需带入一个参数(filter()会调用lessThanFive,参数是列表nembers中的每一个元素,一次一个)。filter()返回所有值都是小于5的列表

3.filter与字符串

下面用如下例子说明:

#定义元组类型

names = ('Jack', 'Jill, 'Steve', '')

#筛选出名字

new_names = filter(None, names)

print new_names

输出结果是元组:

('Jack', 'Jill, 'Steve')

在元组names最后一个名字是空字符串,而filter的第一个参数是None,这说明需要使用identity函数(该函数是简单的返回该元素的)

因为python对空字符串,0和None作为False,所以上面的filter的语句就是移除空元素。

4.filter和函数

目的:找出以J开头的名字

def startsWithJ(element):

if element:

return element[0] == 'J'

return False

j_names = filter(startsWithJ, names)

print j_names

输出结果是元组:('Jack', 'Jill')

注意到了吗,上面的2个结果都是tuple而不是list,再一次说明fliter的返回值类型与参数序列的类型保持一致

python 中一维数据中值滤波函数,在matlab中有 medfilt1函数,Python中有吗,只找到了图像2维的,

有的,在numpy包中

import numpy as np

dat = [1,3,5,6,7,2,4]

med = np.median(dat) # med=4.0

python中怎么生成基于窗函数的fir滤波器

SciPy提供了firwin用窗函数设计低通滤波器,firwin的调用形式如下:

firwin(N, cutoff, width=None, window='hamming')

其中N为滤波器的长度;cutoff为以正规化的频率;window为所使用的窗函数。

滤波方法及python实现

对滤波的 总结 : 对特定频率进行有效提取,并对提取部分进行特定的处理(增益,衰减,滤除)的动作被叫做滤波。

最常用的滤波器类型有三种: 通过式(Pass),搁架式(Shelving)和参量式(Parametric)。 滤波器都有一个叫 参考频率(Reference Frequency)的东西 ,在不同类型的滤波器中,具体的叫法会有所不同。

通过式滤波器可以让参考频率一侧的频率成分完全通过该滤波器,同时对另一侧的频率成分做线性的衰减,就是,一边让通过,一边逐渐被滤除。在信号学中,通过的区域被称为通带,滤除的区域被叫做阻带,在通过式滤波器中,参考频率通常被称为截止频率。

高通滤波器(high-pass filters):让截止频率后的高频区域通过,另一侧滤除,低通滤波器(low-pass filters):让截止频率前的低频区域通过,另一侧滤除,通

以下是高通滤波器与低通滤波器的核心参数:

截止频率(Cut-off frequency) :决定了通带(通过的频率部分)与阻带(阻止的频率部分)的分界曲线,截止频率的位置并非是在曲线开始弯曲的那个点,而是在-3dB的位置。以图2左侧的高通滤波器为例,截止频率点之上的部分频率并没有全部被通过,而是有个曲线,在曲线回归平直后其频率才被完全通过。至于为什么要将-3dB的位置设为截止频率,是因为-3dB对于滤波器的设计而言是个非常重要的位置,如果设为其他位置,则会让通过式滤波器的设计变得尤为复杂。

斜率(Slope) :表示的是通带与阻带的分界曲线的倾斜程度,也就是说斜率决定了分界曲线是偏向平缓的,还是偏向垂直的,斜率越大(更陡峭),人工处理的痕迹就越明显。斜率的单位为dB/oct,中文称为分贝每倍频程。虽然绕口,但其实很简单,如6dB/oct,意思为一个倍频程的距离会产生6dB的衰减,数字滤波器常见的斜率选择有6dB/oct,12dB/oct,18dB/oct,24dB/oct,30dB/oct等等(图3)。

scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)

scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')

这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除10hz以下和400hz以上频率成分,即截至频率为10hz和400hz,则wn1=2*10/1000=0.02,wn2=2*400/1000=0.8。Wn=[0.02,0.8]


网站栏目:Python中滤波函数 python滤波器信号处理
地址分享:http://pwwzsj.com/article/dodihhe.html