Python函数实验分析的简单介绍
利用Python进行数据分析(10)-移动窗口函数
Python-for-data-移动窗口函数
创新互联建站是一家专业提供岳麓企业网站建设,专注与成都网站设计、网站建设、H5网站设计、小程序制作等业务。10年已为岳麓众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。
本文中介绍的是 ,主要的算子是:
统计和通过其他移动窗口或者指数衰减而运行的函数,称之为 移动窗口函数
style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style
2292 rows × 3 columns
rolling算子,行为和resample和groupby类似
rolling可以在S或者DF上通过一个window进行调用
style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style
2292 rows × 3 columns
指定一个常数衰减因子为观测值提供更多的权重。常用指定衰减因子的方法:使用span(跨度)
一些统计算子,例如相关度和协方差等需要同时操作两个时间序列。
例如,金融分析中的股票和基准指数的关联性问题:计算时间序列的百分比变化pct_change()
style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style
在rolling及其相关方法上使用apply方法提供了一种在移动窗口中应用自己设计的数组函数的方法。
唯一要求:该函数从每个数组中产生一个单值(缩聚),例如使用rolling()...quantile(q)计算样本的中位数
Python通过装饰器并使用cprofile对函数进行性能分析
Python中提供了很多接口方便我们能够灵活进行性能分析,包括cProfile模块中的Profile类和pstat模块中的Stats类。
--cprofile是一种确定性分析器,只测量CPU时间,并不关心内存的消耗情况和其他与内存相关联的信息
--它是基于Isprof的用C语言实现的扩展应用,运行开销比较合理,适合分析运行时间较长的程序
--enable(): 开始进行性能分析并收集数据
--disableI(): 停止性能分析
--create_stats(): 停止收集数据,并为已经收集的数据创建stats对象
--print_stats():创建stats对象并打印分析结果
--dump_stats(filename): 把当前性能分析的内容写入文件filename中
--runcall(func, *args, **kwargs): 收集被调用函数func的性能分析信息
--用来分析cProfile输出的文件内容
--pstas模块为开发者提供了Stats类,可以读取和操作stats文件
(Stats类可以接受stats文件名,也可以直接接受cProfile.Profile对象作为数据源。)
--strip_dirs(): 删除报告中所有函数文件名的路径信息
--dump_stats(filename): 把stats中的分析数据写入文件(也可以写成cProfile.Profile.dump_stats())
--sort_stats(*keys): 对报告列表进行排序,函数会一次按照传入的参数排序
--reverse_order(): 逆反当前的排序
--print_stats(*restrictions): 把信息打印到标准输出。*restrictions用于控制打印结果的形式,比如(10,1.0,".*.py.*")表示打印所有py文件的信息的前10行结果
--第一行表示运行这个函数一共使用0.043秒,执行了845次函数调用
--第二行表示结果是按什么顺序排列的(这里表示按照调用次数来进行排列的)
--ncalls: 表示函数调用的次数(有两个数值表示有递归调用,总调用次数/原生调用次数)
--tottime: 函数内部调用时间(不包括他自己调用的其他函数时间)
--percall: tottime/ncalls
--cumtime: 表示累计调用时间(函数执行玩的总时间),它包含了函数自己内部调用的函数时间
--filename:lineno(function): 函数所在的文件,行号,函数名称
上面的函数do_cProfile(do=False, order='tottime')是一个带参数的装饰器,通过do的值来进行性能分析的开关控制,通过order的值来选择输出结果按照什么方式进行排序。
比如我们对函数A和函数B进行性能分析
如果不给装饰器传入参数的话就是默认的False和tottime
python金融分析的实验目的和要求
python金融分析的实验目的和要求:Python适合做数据分析,有很多成熟的数据分析框架:Pandas,Numpy等,这些在课程中都有教。这些框架都可以很方便的完成数据分析的任务。
对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量。 class A: myname="class a" 上面就是一个类。
速度快:
Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。 免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
怎样用 Python 进行数据分析?
做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法
那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等
所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,
之后再学怎么分析。
网页标题:Python函数实验分析的简单介绍
网站地址:http://pwwzsj.com/article/doeeijj.html