包含gis系统技术设计书的词条

基于GIS的土地利用专项规划信息处理系统研究

曲晨晓

创新互联公司2013年成立,先为萝北等服务建站,萝北等地企业,进行企业商务咨询服务。为萝北企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

(河南农业大学土地资源管理系,郑州,450002)

摘要:在总结河南省部分县(市)土地开发整理规划编制工作的基础上,运用GIS和VBA平台,完成土地开发整理基础数据、潜力调查数据和潜力评价的自动处理,实现土地开发整理规划编制的信息处理系统自动化。

关键词:GIS;VBA;土地开发整理;规划

1 基于 GIS 和 VBA 的土地开发整理基础研究

1.1 基础数据自动处理在VBA 中的编程实现

规划起始将收集到大量的基础数据,而这些数据在提交时并不能保证统计口径和数量单位的完全一致,部分数据甚至可能与实际相差甚远。在基础数据录入计算机后,手工校核将耗费大量的时间和人力,并且不能完全保证校核结果的正确性。而计算机具备强大的数据存储和计算功能,通过编写专门的处理工具,可以实现基础数据的自动处理。下面以河南省新安县土地利用现状数据数量单位的转换为例,介绍VBA技术的应用。

自1991年土地利用现状详查以来,新安县国土资源管理部门一直以“亩”为单位统计各类土地的面积,而本次土地开发整理规划面积单位统一采用“公顷”制,所以,有必要将土地利用现状数据单位统一为“公顷”。在处理这些数据时,采用Excel电子表格系统的二次开发工具,编写“批量转换”应用程序,可以快速准确地对这些数据进行大批量的整理。

1.2 规划区域权属图库的快速构建

权属图库是土地开发整理规划工作中用于提高工作效率和编制精度的一项中间成果,在土地开发整理潜力研究和土地开发整理规划成果图制作方面意义重大。该图库以行政村为基本空间单元,以行政村的地名属性为基本属性单元。

权属图的制作在MAPGIS输入编辑子系统中并不复杂,只要底图精度有保证,提取行政界线后再拓扑重建,很快就能创建出图形文件,关键是每个区图元还要具备“行政村名”属性后才能满足后续工作的要求。手工为每一图元录入属性是一个传统的建库方式,但要为全县上千个区图元一一录入属性,不仅耗时,而且容易出现录入的属性与图面注释不相符的错误。MAPGIS输入编辑子系统中“点注释赋为属性”和“LABLE 与区合并”功能可以极大的简化工作,实现地名属性自动录入。技术流程如下:提取地名注释为独立点文件→为点文件创建地名字段→点注释赋为点属性→关闭点文件→LABLE与区合→保存区文件。

1.3 规划区域地形条件研究

地形是影响土地开发整理活动的一项重要因素,比如在坡度>25℃的地段,盲目的开发极易造成水土流失;另外,地形条件的好坏对土地开发整理投资规模影响巨大,坡度对土地开发整理的影响更为显著。所以,有必要对规划区域的坡度进行研究和分类,以便做出更科学的规划决策。

基本上所有的GIS软件都具备坡度分析的功能,MAPGIS的DTM分析子系统对地形图质量要求不高,但分析结果精确,是较好的坡度分析工具。下面以河南省洛阳市吉利区地形分析为例,描述GIS技术在坡度研究中的应用。

吉利区地形图比例尺为1∶10000,与土地利用现状的基本图件——1∶10000分幅现状图完全对应;测绘时间为1986年,具备一定的时效性。坡度研究就以该图为依据,首先把1∶10000地形图扫描矢量化为MAPGIS线文件(记录等高线数据)和MAPGIS点文件(记录高程点数据),并使用MAPGIS输入编辑子系统高程自动赋值功能为等高线添加高程属性;然后运行MAPGIS的DTM分析子系统,装入等高线文件,由系统自动检查等高线错误并修改完善;再设置足够小的微分将等高线栅格化(设置较小微分的目的是使栅格化结果更平滑),栅格化结束会自动生成可供DTM系统分析的GRD数据。这时可以使用DTM系统的格网坡向坡元图绘制功能输出全区的坡度分级图,还可以使用格网立体图功能生成直观的立体模型。

坡度分级图和前面制作的权属图库进一步叠加分析,还可以生成全区各行政村的所属坡度级别和立体格网图。这项地形分析成果将为规划决策提供很有价值的基础依据。

1.4 规划区域农民收入基础数据库的建立

农民人均年纯收入是度量经济实力的重要指标,土地开发整理项目尤其是村庄整理项目能否实施,与该项指标关系密切。

农民收入数据录入计算机后,可以借助Excel等数据分析软件进行数量上的研究。但是,要想获得直观的区域对比以及进一步实现区域划分,还需要GIS技术的帮助。将农民收入数据和行政区图挂接后,将可以实现真正地理意义上的分析研究。

MAPGIS平台具备外挂数据库的功能,可以借助合适的关键字,将数据结构不太复杂的农民收入数据挂入图形。

借助MAPGIS属性管理子系统,使行政区图外挂关系数据库中已存在的农民收入数据。技术流程如下:规范整理农民收入属性表格→保证图形文件与表格文件存在可以连接的关键字段→打开MAPGIS属性管理子系统→执行连接表格功能→保存图形文件。

1.5 相关规划中土地开发整理限制区的判别与提取

一般情况下,各地林业部门会进行退耕还林评价并划定生态退耕区域;水利部门对一些重要的内河航道和泄洪区域也有禁止搞建设项目和开垦农田的规定;在交通部门“十五”计划中,重点建设项目的通行区域自然也不宜安排土地开发整理;1997~2010年土地利用总体规划划定的旅游用地、城镇建设用地等用途管制区,进行土地开发整理则会违背用途管制规则。这些不宜进行开发整理的区域虽然可以在图纸上找到明确的位置和边界,但在各部门小比例尺的规划图上,目视判定和手工划界的误差显而易见。借助MAPGIS强大的空间分析功能,将可以避免这种误差。

(1)将各部门包含土地开发整理限制区的规划图件扫描矢量化入计算机,图形坐标系统校正完毕后,在MAPGIS输入编辑子系统中录入各类限制区的属性。

(2)打开MAPGIS空间分析子系统,调入限制区文件和原已制作的权属图库区文件,执行区与区的判别分析,将把相关规划限制区的属性赋给所在的区图元。

2 土地开发整理潜力调查数据库的构建

2.1 借助MAPINFO 和VBA 实现图形与属性的完整挂接

实践表明,数据结构复杂、数据量巨大的属性表很难挂进图形,这个缺陷在河南省部分县(市) 1∶10000土地利用现状建库工作中已经被充分证明。为解决上述问题,本文尝试借用MAPINFO强大的属性管理功能。

作为桌面型的GIS平台,MAPINFO的空间数据结构或许并不如MAPGIS完美,但基于关系型数据库的设计使该系统与一般属性数据格式几乎完全兼容。在规划建库实践中,本文总结出以下挂库流程:①清除调查数据表中的特殊格式,比如合并单元格、带公式单元格等;②把数据表存为DBF格式;③使用MAPGIS/文件转换子系统,转换MAPGIS图形文件为MAPINFO交换格式;④在MAPINFO中把交换格式文件转为MAPINFO内部格式;⑤把DBF数据表装入MAPINFO工作区;⑥使用MAPINFO“更新列”功能,挂接属性表与图形表;⑦转出挂好的图形表;⑧使用MAPGIS文件转换子系统把交换格式图形还原为MAPGIS格式并保存;⑨检查挂好的图形文件有无变形和属性丢失。

需要说明的是,MAPINFO与MAPGIS两个平台的数据结构毕竟不同,在频繁转换图形格式的过程中也许会出现图形变形和丢失,这种缺陷可以用整图变换的方法来避免。

2.2 农田整理潜力调查数据库的建立

农田整理潜力调查表的基本格式如下:行政村、隶属乡镇、农田面积、零星地、辅助地。为完整存储农田整理潜力调查数据并最大程度的减少存储空间,图形文件的数据结构应设计为表1。

表1 农田整理潜力调查区属性结构

在MAPGIS属性管理子系统中为权属区文件创建上述属性结构,然后保存文件,并打开存储有补充调查数据的表格文件;这时采用上述挂库方法即可开始挂库;属性挂接完毕,农田整理潜力调查数据库即建成。

2.3 村庄整理潜力调查数据库的建立

村庄整理潜力调查表的基本格式如下:行政村、隶属乡镇、村庄面积、农村人口、期末人口、闲置土地、用地标准。为完整存储村庄整理潜力调查数据并最大程度的减少存储空间,图形文件的数据结构应设计为表2。

表2 村庄整理潜力调查区属性结构

2.4 土地开发潜力调查数据库的建立

经规范整理后,土地开发潜力调查表可转换为如下格式:行政村、隶属乡镇、宜开发面积、增加农用地、增加耕地。为完整存储土地开发潜力调查数据并最大程度的减少存储空间,图形文件的数据结构应设计为表3。

表3 土地开发潜力调查区属性结构

3 基于 GIS 的土地整理潜力评价

3.1 农田整理潜力研究模型

农田整理潜力就是指耕地整理后可以新增耕地的潜力,该潜力来源于农田中零星未利用地和辅助生产设施用地的缩减与转化,基于以上思想,将耕地整理潜力测算模型制作如下:

a=k-a′;Δs=a×s

式中,a为增加耕地系数;k为零星未利用地、辅助设施用地占农田比率;a′为标准农田系数;Δs为可增加耕地面积;s为农田面积。

模型中各项参量存储在补充调查数据库中,要获得潜力测算结果,只需采用合适的GIS数据库查询工具。MAPGIS空间分析子系统具备基本的属性运算功能,可以满足潜力测算的要求。执行查询只能求出Δs,经过多次使用双属性四则运算,最终可获得耕地整理潜力。

测算出农田整理潜力后,还需要对所有耕地整理潜力评价单元进行潜力级别的划分,该环节可以在MAPGIS输入编辑子系统中,组合使用“根据属性赋参数”、“根据参数赋属性”等命令来实现。

3.2 村庄整理潜力研究模型

村庄整理潜力即是对村庄用地进行整理后增加农用地尤其是耕地的空间。村庄潜力来源于农村人口的转移和人均建设用标准的下降。村庄潜力测算模型可以制定如下:

Z=ΔS×K;ΔS=S0 -St;a=Z/S0;St=B×Qt

式中,Z为增加耕地面积,K为标准比率,ΔS为增加农用地面积,S0 为规划基期农村居民点面积,St为规划期末农村居民点面积,a为增加耕地系数,B为规划人均用地标准,Qt 为规划期末农村人口数。

模型中各种参量存储在前期工作所建立的GIS数据库中,可以使用GIS属性运算工具进行查询处理,以获得村庄整理潜力。

在测算村庄整理潜力时,采用MAPINFO的SQL查询功能。执行查询将获得所有村庄潜力评价单元增加耕地、增加农用地和增加耕地系数等潜力测算结果。通过执行类似的SQL查询语句,同样可以实现村庄整理潜力级别的划分。

3.3 土地整理潜力汇总结果的输出

上述各类潜力研究均在GIS环境下进行,获得的研究结果仍然存储于GIS数据库,而GIS在文字和表格编辑方面并不具备优势,为了便于进一步数据分析和成果输出,需要把GIS数据库中的潜力数据输出为独立的电子表格,而不是仍然依附于图形数据。

MAPGIS的属性管理子系统在海量属性数据管理方面存在一定的稳定性问题,并且很难与其他属性数据库系统顺利对话。借助MAPGIS的另一子系统“报表定义”,可以弥补属性管理系统的不足,避免字段丢失:①把GIS数据库中包含潜力评价属性成果的图形文件调入MAPGIS属性管理工作区,转换为MAPGIS内部属性表文件——WB格式,该转换不必设置ODBC;②打开MAPGIS报表定义子系统,使用其属性转文本的功能,把WB表文件进一步转换为特定的数据库自由表,这样就完成了潜力数据的输出;③使用Excel等电子表格系统就能制作出格式美观的潜力汇总表。

在河南省部分县(市)土地开发整理规划的编制过程中,MAPGIS、MAPINFO等GIS软件被充分利用,Excel和Word等办公软件中的VBA开发工具也显示了强大的数据处理优势。GIS软件和VBA技术相结合,部分实现了规划信息处理自动化,也使一些人工难于处理的问题得到了较好的解决。

参考文献

国土资源部规划司.土地开发整理规划编制手册.2002.7

MAPGIS地理信息系统开发手册,武汉中地信息工程有限公司,1998.11

殷俊伟、王谦、吕东.MAPINFO下小型查询系统的设计与实现,河南省南阳市城乡测绘大队,2002.9

王海南.信息技术与城市规划.河南省南阳市规划设计院,2002.9

河南省土地开发整理潜力研究.河南省土地勘测规划院,2002.3

李得仁、关泽群.将GIS数据直接纳入图像处理.武汉测绘科技大学学报,1999,24 (3)

怎么做GIS系统?

GIS里面的东西很多!软件也很多~我以前学过ArcGIS,这个软件是国内用的最多的,也是空间分析最厉害的,一般作图都可以,还有ArcVIEW这个比ArcGIS简单,侧重作图。还有就是ILWIS这个国内用的很少,教材也是英文的,我最近在学!!你们公司用的肯定是ArcGIS,所以你想了解我大概给你讲一下!!

主要有2种数据,一个是矢量数据,侧重做规划什么的,就是和规划类关系比较大,也可以与系统开发相集成。另外一个是栅格数据,侧重空间分析的,就是和学者写论文,研究用的比较多,他也可以与系统开发集尘,系统开发!!你要学习的话线看看公司是做系统的还是做什么的,然后从一个数据的操作入手,先学习一中数据的使用!!

顺便推荐给你2本书!!极端初级的《地理信息系统ArcGIS实习教程》赵军的

一般基础的《ArcGIS地理信息系统空间分析试验教程》汤国安的!

做这个的公司收入都不错的,职员的话钱也不少的!!好好干

d3.js,openlayer,Leaflet或其他,哪些适合Web GIS的开发?

OpenLayers作为业内使用最为广泛的地图引擎之一,已被各大GIS厂商和广大WebGIS二次开发者采用。借助OpenLayers强大的扩展功能,可以实现与各个不同的WebGIS平台产品相结合,开发出各具特色的WebGIS应用系统。 本书主要内容涵盖:WebGIS开发基础、OpenLayers开发基础、OpenLayers快速入门、OpenLayers之多源数据加载、OpenLayers之图形绘制、OpenLayers之OGC、OpenLayers之高级功能,最后给出了OpenLayers之项目实战——水利信息在线分析服务系统[1] 。

《WebGIS之OpenLayers全面解析》是第一本全面介绍Openlayers3的中文专业书籍,于2016年7月由电子工业出版社出版,并已登录淘宝、京东、当当等网络商城。

书籍内容简介:

OpenLayers作为业内使用最为广泛的地图引擎之一,已被各大GIS厂商和广大WebGIS二次开发者采用。借助OpenLayers强大的扩展功能,可以实现与各个不同的WebGIS平台产品相结合,开发出各具特色的WebGIS应用系统。 本书主要内容涵盖:WebGIS开发基础、OpenLayers开发基础、OpenLayers快速入门、OpenLayers之多源数据加载、OpenLayers之图形绘制、OpenLayers之OGC、OpenLayers之高级功能,最后给出了OpenLayers之项目实战――水利信息在线分析服务系统。Openlayers功能全且具有强大的可扩展性,使用Javascript语言,支持HTML5新特性,不依赖任何浏览器插件,是目前GIS领域使用最为广泛的开源WebGIS开发库。本书一共由9个章节内容组成,提供近百个程序实例,基本涵盖了WebGIS开发中的全部功能,可使读者迅速入门并掌握WebGIS和Openlayers开发,提高基础知识学习效率和系统开发效率。读者只需要将书中的示例稍加改动,便可快速的将其移植到具体的WebGIS应用中。本书具体内容安排如下:

第一章 概述:介绍了什么是WebGIS,并对目前常见的开源WebGIS软件进行了介绍。

第二章 WebGIS开发基础:对WebGIS开发涉及到的各种基础开发知识进行了讲解,指导读者快速入门WebGIS。

第三章 Openlayers开发基础:对Openlayers Javascript开发库的框架设计、API组成和开发调试方式进行了讲解,指导读者快速了解Openlayers。

第四章 Openlayers快速入门:对Openlayers中提供的常用的10个控件的二次开发进行了讲解,指导读者快速开发出一个简单的网络地图应用。

第五章 Openlayers之多源数据展示篇:通过丰富的示例讲解了Openlayers中如何显示来自各种网络地图服务商提供的地图数据,指导读者实现各种网络地图、KML、GPX、GeoJSON等开放数据源的叠加显示。

第六章 Openlayers之图形绘制篇:本章重点讲解了WebGIS应用中常用的点、线、矩形、多边形、圆等浏览器客户端的图形绘制功能,指导读者开发出各种鼠标交互图形绘制功能。

第七章 Openlayers之OGC篇:对Openlayers中如何加载WMS、WMTS、WFS、WCS图层进行了示例讲解,指导读者快速掌握OGC服务数据的对接。

第八章 Openlayers之高级功能篇:对Openlayers中投影、热区、聚合标注、热点图、统计图、标绘等高级功能进行了示例讲解,指导读者快速高效地开发高级WebGIS功能。

第九章 Openlayers之项目实战:结合一个具体的项目需求进行开发实战,配以详细的程序示例,讲解如何将Openlayers中的常用功能应用到项目实践中,指导读者基于前面章节中的Openlayers开发知识进行WebGIS系统开发。

本书可用于开设GIS专业的各大院校作为网络GIS课程的教材和教辅参考书,本书迎合WebGIS客户端开发技术的趋势和读者需求,适时推出本书,可作为学习WebGIS和Openlayers的入门及高级应用教材,也可供GIS领域科研工作者、高校师生及IT技术人员作为技术参考书。

基于GIS的大型工程分布式光纤传感监测系统研究

基金项目:国家杰出青年基金项目(40225006),国家教育部重点项目(010886),南京大学985工程项目。

索文斌 王宝军 施斌 刘杰

(南京大学地球科学系地球环境计算工程研究所,南京,210093)

【摘要】BOTDR是一种新型的分布式光纤传感监测技术,其分布式、高精度、长距离、实时性、远程控制等特点,已逐渐受到工程界的广泛关注。由于监测是分布式的,所以得到的数据与地理位置具有重要的相关性。结合工程实践中遇到的具体问题,研发了一套基于GIS的大型工程分布式光纤传感监测系统。本文重点论述系统的设计要求,包括设计目标、技术框架和特色功能。结合某隧道 BOTDR监测工程开发的一套相应的监测数据管理系统,实现了工程监测数据的采集与管理、监测结果的可视化、监测信息的对比查询等功能,是一套集智能化分析与决策化管理为一体的多功能管理系统。

【关键词】BOTDR GIS 分布式光纤传感器 监测系统

1 引言

光纤传感技术以其良好的耐久性、抗腐蚀、抗电磁干扰,适合于在恶劣环境中长期工作等优点受到越来越多的工程建设者和科研人员的重视[~3]。BOTDR(Brillouin Optic Time-Domain Reflectometer)布理渊光时域反射计,作为新型的分布式传感技术,逐渐得到工程界的认可。日本、加拿大、瑞士等国已成功地将该技术应用到水坝、桩基、边坡、堤岸等工程的监测中[~3]。我国自2001年由南京大学地球环境计算工程研究所率先从日本引进该技术以来,开展了大量的室内外实验研究,并成功地完成了多个工程项目,取得了一系列重要的研究成果[4-7]。

在具体应用中,BOTDR所提供的监测结果存在诸如直观表现差、数据配准和空间定位困难、综合管理功能弱等方面的缺陷,未经过系统培训的工程技术人员,很难读懂 BOTDR的监测结果,后期成果处理也非常繁琐。本文针对大型工程分布式光纤传感监测领域存在的数据分析与管理中存在的不足,提出了一套比较切合工程实际的解决方案,并结合具体工程实例设计和开发了一套应用系统。实践表明,该系统可以很好地实现对监测数据的采集与管理、监测结果的可视化显示以及监测信息的对比查询等功能。

2 问题的提出

2.1 BOTDR的监测原理[1]

激光在光纤中传播时,光波与光声子相互作用即会产生布理渊散射光。当环境温度的变化量不大(T≤5°)时,布理渊光频率漂移量(vB)与光纤所受的应变量(ε)成正比,其关系式如下式所示:式中:υB(ε)表示光纤受到ε应变时的布理渊频率漂移量;υB(0)表示光纤不受应变时的布理渊频率漂移量;

为比例系数,约为0.5GHz;ε为光纤的实际应变量。

地质灾害调查与监测技术方法论文集

为了得到沿光纤分布的应变信息,只需测量沿光纤分布的布理渊频率漂移量的变化情况,沿光纤距离光源为Z长度的点可由下式求得:

地质灾害调查与监测技术方法论文集

式中:c为光速,n为光纤折射率,T为自激光发射与接收到布理渊散射光所经历的时间。

监测原理如图1所示。

图1 BOTDR的应变监测原理图

2.2 BOTDR在结果表现上存在的问题

在实际工程应用中,根据工程实际情况的不同,可按照不同的黏着方式将传感光纤粘贴在所需监测结构(或材料)的表面,从而获得被粘贴结构(或材料的)沿光纤的径向应变分布信息。但 BOTDR所提供的监测结果存在以下几个方面的缺陷:

(1)海量数据的综合管理缺陷。BOTDR提供的监测数据是沿光纤径向的每一点的应变信息(点之间的间距和仪器的距离分解度相关),而这些点的应变信息是以数据点的形式给出的,造成原始数据繁多复杂。

(2)实际里程与监测结果的数据配准问题。分布式光纤传感器在实际铺设过程中,出于定位需要,经常预留一些冗余光纤,为了将所测得的应变量和实际的光纤里程对应起来,必须获得发生应变部位距离光纤光源的实际里程,而 BOTRD提供的监测里程是光纤的实际长度(包括冗余部分),并不是工程实际里程,也就是说监测结果与实际里程之间存在数据配准问题。

(3)监测结果的直观表现不佳。BOTDR原始监测系统并不提供阈值设定功能,即对于特定的工程而言,我们必须人为地设定阈值寻找应变异常信息。

(4)实测数据影响因子多。BDTOR监测结果是在诸如温度影响在内的多种因子的影响下测得的数据,未经处理的实测数据可信度差。

(5)缺乏面向最终用户的监测数据。BOTDR监测结果是未经配准和处理的纯文本文件,这些数据并不是面向最终用户,而是面向具有 BOTDR操作经验的科研人士,也就是说未经专业培训的工程技术人员很难读懂 BOTDR的原始成果。

3 基于GIS的大型工程分布式光纤传感监测系统设计

3.1 系统设计目标

针对上述所存在的问题,基于GIS的大型工程分布式光纤传感监测系统应该遵循以下的总体设计目标:

(1)完成对所监测工程的日常健康诊断,分析工程安全性。以应变分析为核心,建立工程安全评价体系,完成对影响规划、管理、决策及科学研究的数据进行储存更新、查询检索、智能评价、统计分析、类比判别和制图制表等任务,提高工程管理质量和效率。

(2)利用BOTDR提供的数据,经系统处理后再配合工程实地调查数据,完成以工程质量为目标的各项监测工作。应用横向纵向两方面类比模式监测工程安全性,即利用不同光纤反馈回来的数据,以及同一根光纤不同时间测试的数据进行类比分析,得出工程可信的结果。

3.2 系统技术框架

结合目前GIS的发展趋势,并考虑工程实际的可操作性,系统应用ESRI公司提供的MapOb-jects组件,在Visual Basic 6.0环境下开发了以组件式GIS为核心的管理系统,系统的技术框架如图2所示:

图2 系统技术框架图

从图2的技术框架图中可以直观地看出,系统设计以各种不同用户的需求作为指导,并在开发中通过信息反馈不断更新和完善系统功能及工作模式。系统以基础地理及属性数据库为基础利用GIS的开发实现空间数据的提取,结合光纤监测数据库实现监测数据的配准以及可视化表示,以不断更新和完善的管理与决策数据库实现科学决策,构建集基础功能、智能分析、决策管理于一体的多功能系统。

3.3 系统的功能与特色

基于GIS的大型工程分布式光纤传感监测系统基本实现了如图3所示功能。

从图3可以看出,该系统基本上可以解决工程监测数据的采集与管理、监测结果的可视化显示、监测结果的智能化分析,是一个以工程应用为目标,以监测结果为核心的多功能管理与智能化分析系统。

(1)图层控制:系统加载多个图层(ESRI的Shape文件、AutoCAD的DXF文件或图像文件JPG、BMP、GIF、TIF等)。在使用中用户可以通过图层控制图层是否可见、图元颜色、可视化范围、图层顺序等,以便于对特定图层进行浏览。

图3 系统的功能与特色

(2)视图控制:系统提供图像的放大、缩小,全局显示、局部显示,漫游等基本功能。

(3)动态标注:系统实现了空间任意位置的动态跟踪标注。用户点击鼠标后可随时获得鼠标所在位置的属性信息。

(4)数据维护:用户可以选择两种不同方式查询、检索、更改数据,提供完善的从图到属性和从属性到图的数据查询、检索、更改方式。

(5)绘图功能:系统提供自助的绘图方式,用户可按照自己的想法和要求新建图层或者在原图上自行绘制图形,并根据程序提供的属性表为数据添加属性。

(6)元素选取:系统能够识别图中选取的元素,通过线、矩形、区域、多边形、圆来拾取物体,并显示拾取元素的属性数据。当选中特定位置的光纤时,光纤以闪烁3次来回应用户选中的光纤。

除上述功能之外,鉴于分布式光纤监测的工程特点,本系统还具备以下几个特色功能:

(1)数据分析:系统以绘制专题应变曲线图的方式提供数据分析功能。通过 BOTDR实测数据,绘制光纤应变曲线专题图,根据不同的阈值设置不同颜色的应变曲线图。

(2)数据配准:在实测数据与工程实际里程之间,根据实际工程光纤铺设的特征数据信息(光纤定位信息),系统提供一个精确的配准模块,误差小,应用性强。

(3)图例显示:系统提供独特的图例,便于工程管理。如,实际工程若铺设5根光纤,并且光纤铺设在不同墙面,采取二维示意图显示,可以绘制不同的图例显示,用以区别不同墙面铺设的不同光纤。

(4)对比查询:系统提供了由系统操作主界面至应变曲线绘制界面的对比查询方式,用户可选则从图到曲线或从曲线到图的两种方式进行结果查询,这样,工程监测的质量和效率就大大提高了。

4 工程应用实例

4.1 工程概况

某隧道工程是一湖底隧道,全长约2.56km,其中湖底隧道长约1.66km,为双向六车道,三箱室结构形式,其中左右两个箱式为车行道,中间箱室为净宽3m的管廊与检修通道。隧道设计宽约32m,净空高度4.5m,设计车速为60km/h。

2002年7月,隧道项目指挥部经反复调研和论证后,决定采用BOTDR技术进行隧道整体变形监测。2002年11月~12月,项目组完成了传感光纤铺设,铺设情况如图4所示,并分阶段对隧道变形进行监测。2003年1月~4月,为施工监测阶段,2003年5月通车后至9月为常规监测阶段。施工监测阶段主要进行由于后期施工对隧道变形的影响以及隧道箱体接缝变形监测,监测频率为2天/次。常规监测阶段主要进行通车条件下隧道稳定性监测,监测频率3~5次/周。

图4 某隧道光纤总体平面布置图

4.2 隧道工程监测数据管理的系统实现

4.2.1 数据准备

系统的基本数据包括施工区域图、隧道信息、光纤铺设信息、光纤监测数据等四大类。这四类数据既包含了空间信息数据又包含了属性数据,是构成系统数据结构的基础,又是系统数据分析和管理的前提。

(1)施工区域图。主要提供隧道基本信息与周边环境状况,用以确定施工地理信息、施工线路等,为绘制隧道二维示意图提供标准。

(2)隧道信息。主要提供隧道纵剖面、横剖面信息。横剖面信息用于了解光纤铺设里程和方位,纵剖面信息主要用于掌握具体施工操作面,为准确绘制隧道二维示意图做数据基础。

(3)光纤铺设信息。主要提供传感光纤铺设信息。拟铺设的5条传感光纤处在隧道南洞、北洞不同的墙面上,每条光纤的实际铺设长度与工程里程必有误差,通过在铺设过程中了解光纤定位信息,为数据配准模块提供数据基础。

(4)光纤监测数据。主要指 BOTDR实测应变数据,这些实测数据通过数据配准、阈值设定等系统转换处理后,将得到精确的隧道不同位置的应变信息。

4.2.2 系统工作流程

数据管理与分析是该系统的核心组成部分,是得到精确工程监测信息的重要组成部分。数据管理与分析主要靠以下流程来实现:

步骤一:数据准备

将BOTDR实测数据以*.txt文件存放到指定位置,以备数据处理调用。

步骤二:选择光纤

在5根铺设的光纤中,在主操作界面中点击所需监测光纤,即完成所需光纤的选择,点击所选光纤时,与之相对应的系列在后台被调入。

步骤三:选择系列

所谓系列,就是不同时间监测的不同光纤的应变信息和数据配准信息。选择系列操作包括调入监测数据,选择数据配准,设置隧道变形阈值等。

步骤四:应变分析

进行系列选择之后,选择绘制曲线,系统即在新窗口绘制出经数据配准的隧道整体应变分析图。

除上述主要数据管理与分析功能之外,系统还设置了分段管理与分析的功能,即通过对所需监测段进行设置起点、设置终点操作,进行局部数据的管理与分析。另外,系统还提供了由图到曲线(或曲线到图)的对比查询方式,选择图到曲线(或曲线到图)的菜单项之后,图和曲线完美地对应起来,并提供了阈值设定功能,做到自动预警,避免人为干扰。图5至图7显示了系统数据与管理功能的操作界面,其中,图5为数据分析界面,图6为选择系列界面,图7为隧道应变分析曲线界面。

图5 数据分析界面图

图6 选择系列界面

图7 隧道应变分析曲线界面

5 结语

综上所述,应用GIS管理分布式光纤监测工程可实现海量数据的高效管理。GIS以其独特的数据管理、查询、检索、分析模式成为工程管理的首选。它的海量数据分层管理、数据结果的可视化表现、实现双向查询、面向最终用户的特点更显示其理想的工程管理能力。具体的说,系统具有以下优点:

(1)系统改善了BOTDR原系统中海量数据的综合管理模式,结果显示更加清晰直观。

(2)系统设置了数据配准、阈值管理等模块,监测结果可直接应用,避免了人为判别的误差,提高了工作效率。

(3)系统采用可视化显示,面向最终用户,无须对具体工程监测人员进行系统培训。

(4)系统实现了工程监测数据的采集与管理、监测结果的可视化显示、监测信息的对比查询等功能,是一个集智能化分析与决策化管理为一体的多功能管理系统。

本系统以具体工程为实例,具有更加科学、高效、直观、方便等优点,并减少了BOTDR监测结果的后期人为干扰,使得测试结果更加客观、准确,有利于科学管理和提高效率。

参考文献

[1]Hiroshige Ohno,Hiroshi Naruse,et al.Industrial Applications of the BOTDR Optical Fiber Strain sensor[J].Optical Fiber Technology 7,2001:45~64

[2]Inaudi D, Casanova N.Geo-structural monitoring with long-gage interferometric Sensors[A].Proceedings Of The Society Of Photo-Optical Instrumentation Engineers(SPIE),3995[C].Bellingham,WA:Spie-Int Society Optical Engineering,2000:164~174

[3]Ohno H, Naruse H,Kurashima T,et al.Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles[J].IEICE Trans.Electron,2002,E85-C(4):945~951

[4]Shi B,Xu H Z,Zhang D,et al.A study on BOTDR application in monitoring deformation of a tunnel[A].Proc 1 st inter conf of structuraI health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:1025~1030

[5]Ding Y,Shi B,Cui H L,et al.The stability of optic fiber as strain sensor under invariable stress[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:267~270

[6]Zhang D,Shi B,Xu H Z,et al.Application of BOTDR into structural bending monitoring[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[7]Xu H Z,Shi B,Zhang D,et al.Data processing in the distributed strain measurement of BOTDR based on wavelet analysis[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[8]Building Applicatins with MapObjects[M]USA.Enviromental System Research,Institute,Inc.1999


网页名称:包含gis系统技术设计书的词条
转载注明:http://pwwzsj.com/article/dohchid.html