go语言运行时 go语言执行

Go语言有什么优势?

GO语言的优势:可直接编译成机器码,不依赖其他库,glibc的版本有一定要求,部署就是扔一个文件上去就完成了。静态类型语言,但是有动态语言的感觉,静态类型的语言就是可以在编译的时候检查出来隐藏的大多数问题,动态语言的感觉就是有很多的包可以使用,写起来的效率很高。语言层面支持并发,这个就是Go最大的特色,天生的支持并发,我曾经说过一句话,天生的基因和整容是有区别的,大家一样美丽,但是你喜欢整容的还是天生基因的美丽呢?Go就是基因里面支持的并发,可以充分的利用多核,很容易的使用并发。内置runtime,支持垃圾回收,这属于动态语言的特性之一吧,虽然目前来说GC不算完美,但是足以应付我们所能遇到的大多数情况,特别是Go1.1之后的GC。简单易学,Go语言的作者都有C的基因,那么Go自然而然就有了C的基因,那么Go关键字是25个,但是表达能力很强大,几乎支持大多数你在其他语言见过的特性:继承、重载、对象等。丰富的标准库,Go目前已经内置了大量的库,特别是网络库非常强大,我最爱的也是这部分。内置强大的工具,Go语言里面内置了很多工具链,最好的应该是gofmt工具,自动化格式化代码,能够让团队review变得如此的简单,代码格式一模一样,想不一样都很困难。跨平台编译,如果你写的Go代码不包含cgo,那么就可以做到window系统编译linux的应用,如何做到的呢?Go引用了plan9的代码,这就是不依赖系统的信息。Go语言这么多的优势,你还不想学吗?我记得当时我看的是黑马程序员的视频,我对他们视频的印象就是通俗易懂,就是好!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、雅安服务器托管、营销软件、网站建设、成华网站维护、网站推广。

golang的线程模型——GMP模型

内核线程(Kernel-Level Thread ,KLT)

轻量级进程(Light Weight Process,LWP):轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程

用户线程与系统线程一一对应,用户线程执行如lo操作的系统调用时,来回切换操作开销相对比较大

多个用户线程对应一个内核线程,当内核线程对应的一个用户线程被阻塞挂起时候,其他用户线程也阻塞不能执行了。

多对多模型是可以充分利用多核CPU提升运行效能的

go线程模型包含三个概念:内核线程(M),goroutine(G),G的上下文环境(P);

GMP模型是goalng特有的。

P与M一般是一一对应的。P(上下文)管理着一组G(goroutine)挂载在M(内核线程)上运行,图中左边蓝色为正在执行状态的goroutine,右边为待执行状态的goroutiine队列。P的数量由环境变量GOMAXPROCS的值或程序运行runtime.GOMAXPROCS()进行设置。

当一个os线程在执行M1一个G1发生阻塞时,调度器让M1抛弃P,等待G1返回,然后另起一个M2接收P来执行剩下的goroutine队列(G2、G3...),这是golang调度器厉害的地方,可以保证有足够的线程来运行剩下所有的goroutine。

当G1结束后,M1会重新拿回P来完成,如果拿不到就丢到全局runqueue中,然后自己放到线程池或转入休眠状态。空闲的上下文P会周期性的检查全局runqueue上的goroutine,并且执行它。

另一种情况就是当有些P1太闲而其他P2很忙碌的时候,会从其他上下文P2拿一些G来执行。

详细可以翻看下方第一个参考链接,写得真好。

最后用大佬的总结来做最后的收尾————

Go语言运行时,通过核心元素G,M,P 和 自己的调度器,实现了自己的并发线程模型。调度器通过对G,M,P的调度实现了两级线程模型中操作系统内核之外的调度任务。整个调度过程中会在多种时机去触发最核心的步骤 “一整轮调度”,而一整轮调度中最关键的部分在“全力查找可运行G”,它保证了M的高效运行(换句话说就是充分使用了计算机的物理资源),一整轮调度中还会涉及到M的启用停止。最后别忘了,还有一个与Go程序生命周期相同的系统监测任务来进行一些辅助性的工作。

浅析Golang的线程模型与调度器

Golang CSP并发模型

Golang线程模型

go runtime包的使用

通过runtime.GOMAXPROCS函数,应用程序何以在运行期间设置运行时系统中得P最大数量。但这会引起“Stop the Word”。所以,应在应用程序最早的调用。并且最好的设置P最大值的方法是在运行Go程序之前设置好操作程序的环境变量GOMAXPROCS,而不是在程序中调用runtime.GOMAXPROCS函数。

最后记住,无论我们传递给函数的整数值是什么值,运行时系统的P最大值总会在1~256之间。

runtime.Goexit函数被调用后,会立即使调用他的Groution的运行被终止,但其他Goroutine并不会受到影响。runtime.Goexit函数在终止调用它的Goroutine的运行之前会先执行该Groution中还没有执行的defer语句。

runtime.Gosched函数的作用是暂停调用他的Goroutine的运行,调用他的Goroutine会被重新置于Gorunnable状态,并被放入调度器可运行G队列中。

runtime.NumGoroutine函数在被调用后,会返回系统中的处于特定状态的Goroutine的数量。这里的特指是指Grunnable\Gruning\Gsyscall\Gwaition。处于这些状态的Groutine即被看做是活跃的或者说正在被调度。

注意:垃圾回收所在Groutine的状态也处于这个范围内的话,也会被纳入该计数器。

前者调用会使调用他的Goroutine与当前运行它的M锁定到一起,后者调用会解除这样的锁定。

注意:

debug.SetMaxStack函数的功能是约束单个Groutine所能申请的栈空间的最大尺寸。

debug.SetMaxThreads函数的功能是对go语言运行时系统所使用的内核线程的数量(确切的说是M的数量)进行设置

会让运行时系统进行一次强制性的垃圾收集,

用于设置一个比率(垃圾收集比率),前面所说的单元增量与前一次垃圾收集时的岁内存的单元数量和此垃圾手机比率有关。

触发垃圾收集的堆内存单元增量=上一次垃圾收集完的堆内存单元数量*(垃圾收集比率/100)


分享文章:go语言运行时 go语言执行
当前路径:http://pwwzsj.com/article/doidegg.html