python惰性求值函数 python 惰性计算

Python|range函数用法完全解读

迭代器是 23 种设计模式中最常用的一种(之一),在 Python 中随处可见它的身影,我们经常用到它,但是却不一定意识到它的存在。在关于迭代器的系列文章中(链接见文末),我至少提到了 23 种生成迭代器的方法。有些方法是专门用于生成迭代器的,还有一些方法则是为了解决别的问题而“暗中”使用到迭代器。

宽甸网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站建设等网站项目制作,到程序开发,运营维护。创新互联2013年至今到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

在系统学习迭代器之前,我一直以为 range() 方法也是用于生成迭代器的,现在却突然发现,它生成的只是可迭代对象,而并不是迭代器! (PS:Python2 中 range() 生成的是列表,本文基于Python3,生成的是可迭代对象)

于是,我有了这样的疑问:为什么 range() 不生成迭代器呢?在查找答案的过程中,我发现自己对 range 类型的认识存在一些误区。因此,本文将和大家全面地认识一下 range ,期待与你共同学习进步。

1、range() 是什么?

它的语法:range(start, stop [,step]) ;start 指的是计数起始值,默认是 0;stop 指的是计数结束值,但不包括 stop ;step 是步长,默认为 1,不可以为 0 。range() 方法生成一段左闭右开的整数范围。

对于 range() 函数,有几个注意点:(1)它表示的是左闭右开区间;(2)它接收的参数必须是整数,可以是负数,但不能是浮点数等其它类型;(3)它是不可变的序列类型,可以进行判断元素、查找元素、切片等操作,但不能修改元素;(4)它是可迭代对象,却不是迭代器。

2、 为什么range()不生产迭代器?

可以获得迭代器的内置方法很多,例如 zip() 、enumerate()、map()、filter() 和 reversed() 等等,但是像 range() 这样仅仅得到的是可迭代对象的方法就绝无仅有了(若有反例,欢迎告知)。这就是我存在知识误区的地方。

在 for-循环 遍历时,可迭代对象与迭代器的性能是一样的,即它们都是惰性求值的,在空间复杂度与时间复杂度上并无差异。我曾概括过两者的差别是“一同两不同”:相同的是都可惰性迭代,不同的是可迭代对象不支持自遍历(即next()方法),而迭代器本身不支持切片(即 getitem () 方法)。

虽然有这些差别,但很难得出结论说它们哪个更优。现在微妙之处就在于,为什么给 5 种内置方法都设计了迭代器,偏偏给 range() 方法设计的就是可迭代对象呢?把它们都统一起来,不是更好么?

事实上,Pyhton 为了规范性就干过不少这种事,例如,Python2 中有 range() 和 xrange() 两种方法,而 Python3 就干掉了其中一种,还用了“李代桃僵”法。为什么不更规范点,令 range() 生成的是迭代器呢?

关于这个问题,我没找到官方解释,以下纯属个人观点 。

zip() 等方法都需要接收确定的可迭代对象的参数,是对它们的一种再加工的过程,因此也希望马上产出确定的结果来,所以 Python 开发者就设计了这个结果是迭代器。这样还有一个好处,即当作为参数的可迭代对象发生变化的时候,作为结果的迭代器因为是消耗型的,不会被错误地使用。

而 range() 方法就不同了,它接收的参数不是可迭代对象,本身是一种初次加工的过程,所以设计它为可迭代对象,既可以直接使用,也可以用于其它再加工用途。例如,zip() 等方法就完全可以接收 range 类型的参数。

也就是说,range() 方法作为一种初级生产者,它生产的原料本身就有很大用途,早早把它变为迭代器的话,无疑是一种画蛇添足的行为。

对于这种解读,你是否觉得有道理呢?欢迎就这个话题与我探讨。

3、range 类型是什么?

以上是我对“为什么range()不产生迭代器”的一种解答。顺着这个思路,我研究了一下它产生的 range 对象,一研究就发现,这个 range 对象也并不简单。

首先奇怪的一点就是,它竟然是不可变序列!我从未注意过这一点。虽然说,我从未想过修改 range() 的值,但这一不可修改的特性还是令我惊讶。

翻看文档,官方是这样明确划分的——有三种基本的序列类型:列表、元组和范围(range)对象。(There are three basic sequence types: lists, tuples, and range objects.)

这我倒一直没注意,原来 range 类型居然跟列表和元组是一样地位的基础序列!我一直记挂着字符串是不可变的序列类型,不曾想,这里还有一位不可变的序列类型呢。

那 range 序列跟其它序列类型有什么差异呢?

普通序列都支持的操作有 12 种。range 序列只支持其中的 10 种,不支持进行加法拼接与乘法重复。

那么问题来了:同样是不可变序列,为什么字符串和元组就支持上述两种操作,而偏偏 range 序列不支持呢?虽然不能直接修改不可变序列,但我们可以将它们拷贝到新的序列上进行操作啊,为何 range 对象连这都不支持呢?

且看官方文档的解释:

…due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern.

原因是 range 对象仅仅表示一个遵循着严格模式的序列,而重复与拼接通常会破坏这种模式…

问题的关键就在于 range 序列的 pattern,仔细想想,其实它表示的就是一个等差数列啊(喵,高中数学知识没忘…),拼接两个等差数列,或者重复拼接一个等差数列,想想确实不妥,这就是为啥 range 类型不支持这两个操作的原因了。由此推论,其它修改动作也会破坏等差数列结构,所以统统不给修改就是了。

4、小结

回顾全文,我得到了两个偏冷门的结论:range 是可迭代对象而不是迭代器;range 对象是不可变的等差序列。

若单纯看结论的话,你也许没有感触,或许还会说这没啥了不得啊。但如果我追问,为什么 range 不是迭代器呢,为什么 range 是不可变序列呢?对这俩问题,你是否还能答出个自圆其说的设计思想呢?(PS:我决定了,若有机会面试别人,我必要问这两个问题的嘿~)

由于 range 对象这细微而有意思的特性,我觉得这篇文章写得值了。本文是作为迭代器系列文章的一篇来写的,所以对于迭代器的基础知识介绍不多,另外,还有一种特殊的迭代器也值得单独成文,那就是生成器了。

这个python题目怎么写?

无意间,看到这么一道Python面试题:以下代码将输出什么?

def testFun:

temp = [lambda x : i*x for i in range(4)]

return temp

for everyLambda in testFun:

print (everyLambda(2))

脑中默默一想,这还用说么,肯定是:

2

4

6

最后一看答案,竟然是:

6

6

6

6

于是带着怀疑的心态(其实是不服输,不认错),打开编辑器,快速一敲,果然是:

怀疑了人生半天,本来还想黑,WTF Python…然后才想通是自己太生疏......

最后发现原因竟是:Python 的闭包的后期绑定导致的 late binding。

这意味着在闭包中的变量是在内部函数被调用的时候被查找,所以当任何testFun 返回的函数被调用,i 的值是在它被调用时的周围作用域中查找。

也就是说无论哪个返回的函数被调用,for 循环都已经完成了,i 最后的值是 3,因此,每个返回的函数 testFun 的值都是 3。

因此一个等于 2 的值被传递进以上代码,它们将返回一个值 6 (比如:3 x 2)。

究竟如何才能实现出这样的结果呢?

2

4

6

想了想,若能立即绑定参数,或者直接不用闭包总该行吧,用另一种方式避免 i 的改写。

回忆了之前所学知识,最后酝酿出了四种解决方案。

第一种:创建一个闭包,通过使用默认参数立即绑定它的参数

def testFun:

temp = [lambda x, i=i: i * x for i in range(4)]

return temp

for everyLambda in testFun:

print(everyLambda(2))

第二种:使用functools.partial 函数,把函数的某些参数(不管有没有默认值)给固定住(也就是相当于设置默认值)

from functools import partial

from operator import mul

def testFun:

return [partial(mul, i) for i in range(4)]

for everyLambda in testFun:

print(everyLambda(2))

第三种:优雅的写法,直接用生成器

def testFun:

return (lambda x, i=i: i * x for i in range(4))

for everyLambda in testFun:

print(everyLambda(2))

第四种:利用yield的惰性求值的思想

def testFun:

for i in range(4):

yield lambda x: i * x

for everyLambda in testFun:

print(everyLambda(2))

最终运行结果:

有了解决方案后,又陷入了怀疑自己,这个题目究竟是考察的是什么?是在考面试者闭包相关知识以及Python 的闭包的后期绑定问题么?

若将题目改成:以下代码输出的结果是(0,2,4,6)么?如果不是,你将会怎么做,让它变成(0,2,4,6)?这样会不会更有意思点呢?欢迎大家出妙招,看究竟有多少招?(哈哈哈!!!)

python惰性求值有哪些函数

Copyright © 1999-2020, CSDN.NET, All Rights Reserved

惰性计算的序列

打开APP

Python 的惰性求值与惰性序列 翻译

2018-07-23 14:57:48

2点赞

东师小镇

码龄5年

关注

惰性求值

在编程语言理论中,惰性求值(英语:Lazy Evaluation),又译为惰性计算、懒惰求值,也称为传需求调用(call-by-need),是一个计算机编程中的一个概念,它的目的是要最小化计算机要做的工作。它有两个相关而又有区别的含意,可以表示为“延迟求值”和“最小化求值”。

避免不必要的计算,带来性能的提升(最小化求值)。

对于Python中的条件表达式 if x and y,在x为false的情况下y表达式的值将不再计算。而对于if x or y,当x的值为true的时候将直接返回,不再计算y的值。因此编程中可以利用该特性,在 and逻辑中,将小概率发生的条件放在前面或者在or逻辑中,将大概率发生的时间放在前面,有助于性能的提升。

2. 节省空间,使得无线循环的数据结构成为可能(延迟求值)。

延迟求值特别用于函数式编程语言中。在使用延迟求值的时候,表达式不在它被绑定到变量之后就立即求值,而是在该值被取用的时候求值。延迟求值的一个好处是能够建立可计算的无限列表而没有妨碍计算的无限循环或大小问题。例如,可以建立生成无限斐波那契数列表的函数(经常叫做“流”)。第n个斐波那契数的计算仅是从这个无限列表上提取出这个元素,它只要求计算这个列表的前n个成员。

惰性序列

Python的惰性序列多数指 iterator,其特点正如同上文所述,具有惰性计算特点的序列称为惰性序列。

Python的iterator是一个惰性序列,意思是表达式和变量绑定后不会立即进行求值,而是当你用到其中某些元素的时候才去求某元素对的值。 惰性是指,你不主动去遍历它,就不会计算其中元素的值。

一句话理解:

迭代器的一个优点就是它不要求你事先准备好整个迭代过程中所有的元素。

迭代器仅仅在迭代至某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。

这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。

python极简教程:生成器和匿名函数

记住两个关键:

初学的你,还是太难理解?

你可以将生成器理解为一个盒子,你可以向这个盒子里随意添加元素,当你需要的时候,再取出来用。

请看下面的例子:

作用:惰性求值(一边循环一边计算的机制),节省性能

举个例子:斐波那契数列(0,1,1,2,3,5...),打印斐波那契数列前50个元素

当:

时,我们可以使用匿名函数。

初学的你,还是太难理解?

你想实现一个求x的平方的函数,但是这个函数太简单,不值得专门def定义,同时,你忘记了平方的英文如何拼写,要是命名成 "pingfang",又显得自己太low,于是乎,你可以不给这个函数起名字,还能实现它。这就是匿名函数lambda表达式。

比如:求一个数的平方

01 如果你是初学者,可以先不掌握生成器和匿名函数,待学成python后,再行琢磨;

02 在实际工作中,生成器和匿名函数的使用频次,相对较高,并且在面试中是高频问点。


标题名称:python惰性求值函数 python 惰性计算
转载来源:http://pwwzsj.com/article/dojdodo.html