keras孪生网络的图片相似度怎么计算?-创新互联

不懂keras孪生网络的图片相似度怎么计算??其实想解决这个问题也不难,下面让小编带着大家一起学习怎么去解决,希望大家阅读完这篇文章后大所收获。

成都创新互联是专业的巴南网站建设公司,巴南接单;提供网站制作、网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行巴南网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']
 
def load_data(seq_names,data_number,seq_len): 
#生成图片对
  print('loading data.....')
  frame_num = 51
  train_data1 = []
  train_data2 = []
  train_lab = []
  count = 0
  while count < data_number:
    count = count + 1
    pos_neg = np.random.randint(0,2)
    if pos_neg==0:
      seed1 = np.random.randint(0,seq_len)
      seed2 = np.random.randint(0,seq_len)
      while seed1 == seed2:
       seed1 = np.random.randint(0,seq_len)
       seed2 = np.random.randint(0,seq_len)
      frame1 = np.random.randint(1,frame_num)
      frame2 = np.random.randint(1,frame_num)
      path2 = os.path.join(root_path,'data','simility_data',seq_names[seed1],str(frame1)+'.jpg')
      path3 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed2], str(frame2) + '.jpg')
      image1 = np.array(misc.imresize(Image.open(path2),[224,224]))
      image2 = np.array(misc.imresize(Image.open(path3),[224,224]))
      train_data1.append(image1)
      train_data2.append(image2)
      train_lab.append(np.array(0))
    else:
     seed = np.random.randint(0,seq_len)
     frame1 = np.random.randint(1, frame_num)
     frame2 = np.random.randint(1, frame_num)
     path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame1) + '.jpg')
     path3 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame2) + '.jpg')
     image1 = np.array(misc.imresize(Image.open(path2),[224,224]))
     image2 = np.array(misc.imresize(Image.open(path3),[224,224]))
     train_data1.append(image1)
     train_data2.append(image2)
     train_lab.append(np.array(1))
  return np.array(train_data1),np.array(train_data2),np.array(train_lab)
 
def vgg_16_base(input_tensor):
  net = Conv2D(64(3,3),activation='relu',padding='same',input_shape=(224,224,3))(input_tensor)
  net = Convolution2D(64,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net= MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
  net = Flatten()(net)
  return net
 
def siamese(vgg_path=None,siamese_path=None):
  input_tensor = Input(shape=(224,224,3))
  vgg_model = Model(input_tensor,vgg_16_base(input_tensor))
  if vgg_path:
    vgg_model.load_weights(vgg_path)
  input_im1 = Input(shape=(224,224,3))
  input_im2 = Input(shape=(224,224,3))
  out_im1 = vgg_model(input_im1)
  out_im2 = vgg_model(input_im2)
  diff = keras.layers.substract([out_im1,out_im2])
  out = Dense(500,activation='relu')(diff)
  out = Dense(1,activation='sigmoid')(out)
  model = Model([input_im1,input_im2],out)
  if siamese_path:
    model.load_weights(siamese_path)
  return model
 
train = True
if train:
  model = siamese(siamese_path='model/simility/vgg.h6')
  sgd = SGD(lr=1e-6,momentum=0.9,decay=1e-6,nesterov=True)
  model.compile(optimizer=sgd,loss='mse',metrics=['accuracy'])
  tensorboard = keras.callbacks.TensorBoard(histogram_freq=5,log_dir='log/simility',write_grads=True,write_images=True)
  ckpt = keras.callbacks.ModelCheckpoint(os.path.join(root_path,'model','simility','vgg.h6'),
                    verbose=1,period=5)
  train_data1,train_data2,train_lab = load_data(train_names,4000,20)
  model.fit([train_data1,train_data2],train_lab,callbacks=[tensorboard,ckpt],batch_size=64,epochs=50)
else:
  model = siamese(siamese_path='model/simility/vgg.h6')
  test_im1,test_im2,test_labe = load_data(test_names,1000,5)
  TP = 0
  for i in range(1000):
   im1 = np.expand_dims(test_im1[i],axis=0)
   im2 = np.expand_dims(test_im2[i],axis=0)
   lab = test_labe[i]
   pre = model.predict([im1,im2])
   if pre>0.9 and lab==1:
    TP = TP + 1
   if pre<0.9 and lab==0:
    TP = TP + 1
  print(float(TP)/1000)

网站题目:keras孪生网络的图片相似度怎么计算?-创新互联
地址分享:http://pwwzsj.com/article/doojig.html