LRUCache详解-创新互联
1.概念
创新互联专注于孝义网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供孝义营销型网站建设,孝义网站制作、孝义网页设计、孝义网站官网定制、微信平台小程序开发服务,打造孝义网络公司原创品牌,更为您提供孝义网站排名全网营销落地服务。LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。
Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。
2.LRUCache的实现原理
实现LRU Cache的方法和思路很多,但是要保持高效实现O(1)的put和get,那么使用双向链表和哈希表的搭配是最高效和经典的。
使用双向链表是因为双向链表可以实现任意位置O(1)的插入和删除,
使用哈希表是因为哈希表的增删查改也是O(1)。
package test;
import java.util.HashMap;
import java.util.Map;
class Node {
public int key;
public int val;
public Node prev;
public Node next;
public Node() {
}
public Node(int key, int val) {
this.key = key;
this.val = val;
}
@Override
public String toString() {
return "Node{" +
"key=" + key +
", val=" + val +
'}';
}
}
public class MyLRUCache {
public Node head;
public Node tail;
public int usedsize;
public Mapcache;
public int capacity;
public MyLRUCache(int capacity) {
this.head = new Node();
this.tail = new Node();
head.next = tail;
tail.prev = head;
cache = new HashMap<>();
this.capacity = capacity;
}
//插入元素
public void put(int key, int val) {
Node node = cache.get(key);
if (node == null) {
Node newnode = new Node(key, val);
cache.put(key, newnode);
addToTail(newnode);
usedsize++;
//检查当前双向链表的有效数据个数 是不是超过了capacity
if (usedsize >capacity) {
Node removeNode = removeHead();
cache.remove(removeNode.key);
usedsize--;
}
printNodes("put");
} else {
//更新val的值,其实没必要
node.val = val;
moveTotail(node);
}
}
//删除指定节点
public void removeNode(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
//移动当前节点到尾巴节点
public void moveTotail(Node node) {
removeNode(node);
addToTail(node);
}
//添加到尾巴节点
public void addToTail(Node node) {
tail.prev.next = node;
node.prev = tail.prev;
node.next = tail;
tail.prev = node;
}
//删除最近没使用的头结点
public Node removeHead() {
Node del = head.next;
head.next = del.next;
del.next.prev = head;
return del;
}
//访问当前的key 把你访问的节点放到尾巴
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
//把最近使用的放到了尾巴
moveTotail(node);
printNodes("get");
return node.val;
}
public void printNodes(String str) {
System.out.println(str + " ");
Node cur = head.next;
while (cur != tail) {
System.out.print(cur + " ");
cur = cur.next;
}
System.out.println();
}
public static void main(String[] args) {
MyLRUCache myLRUCache = new MyLRUCache(3);
myLRUCache.put(100, 1);
myLRUCache.put(200, 2);
myLRUCache.put(300, 3);
System.out.println("获取元素");
myLRUCache.get(200);
myLRUCache.get(100);
System.out.println("存放元素,会删除头结点,因为头节点是最近最少使用的");
myLRUCache.put(999, 9);
}
}
3.jdk当中LRUCache被封装到了LinkedHashMap
package test;
import java.util.LinkedHashMap;
import java.util.Map;
public class LRUCache extends LinkedHashMap{
public int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75f, true);
this.capacity = capacity;
}
@Override
public Integer get(Object key) {
return super.getOrDefault(key, -1);
}
@Override
public Integer put(String key, Integer value) {
return super.put(key, value);
}
@Override
protected boolean removeEldestEntry(Map.Entryeldest) {
return size() >capacity;
}
public static void main(String[] args) {
LRUCache lruCache = new LRUCache(3);
lruCache.put("a", 1);
lruCache.put("b", 2);
lruCache.put("c", 3);
System.out.println(lruCache);
System.out.println("获取元素");
System.out.println(lruCache.get("b"));
System.out.println(lruCache);
System.out.println(lruCache.get("a"));
System.out.println(lruCache);
System.out.println("存放元素,会删除头结点,因为头结点是最近最少使用的");
lruCache.put("d", 4);
System.out.println(lruCache);
}
public static void main2(String[] args) {
LinkedHashMaplinkedHashMap =
new LinkedHashMap(16, 0.7f, true);
linkedHashMap.put("a", 1);
linkedHashMap.put("b", 2);
linkedHashMap.put("c", 3);
System.out.println(linkedHashMap);
System.out.println("获取元素");
System.out.println(linkedHashMap.get("a"));
System.out.println(linkedHashMap);
System.out.println(linkedHashMap.get("b"));
System.out.println(linkedHashMap);
System.out.println(linkedHashMap.get("c"));
System.out.println(linkedHashMap);//把常用的数据放到了尾巴 不常用的放在头部便于删除
}
public static void main1(String[] args) {
LinkedHashMaplinkedHashMap =
new LinkedHashMap(16, 0.7f, false);
linkedHashMap.put("a", 1);
linkedHashMap.put("b", 2);
linkedHashMap.put("c", 3);
System.out.println(linkedHashMap);
System.out.println("获取元素");
System.out.println(linkedHashMap.get("a"));
System.out.println(linkedHashMap);
}
}
4.LRU缓存
class Node {
public int key;
public int val;
public Node prev;
public Node next;
public Node() {
}
public Node(int key, int val) {
this.key = key;
this.val = val;
}
@Override
public String toString() {
return "Node{" +
"key=" + key +
", val=" + val +
'}';
}
}
public class LRUCache {
public Node head;
public Node tail;
public int usedsize;
public Mapcache;
public int capacity;
public LRUCache(int capacity) {
this.head = new Node();
this.tail = new Node();
head.next = tail;
tail.prev = head;
cache = new HashMap<>();
this.capacity = capacity;
}
//插入元素
public void put(int key, int val) {
Node node = cache.get(key);
if (node == null) {
Node newnode = new Node(key, val);
cache.put(key, newnode);
addToTail(newnode);
usedsize++;
//检查当前双向链表的有效数据个数 是不是超过了capacity
if (usedsize >capacity) {
Node removeNode = removeHead();
cache.remove(removeNode.key);
usedsize--;
}
} else {
//更新val的值,其实没必要
node.val = val;
moveTotail(node);
}
}
//删除指定节点
public void removeNode(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
//移动当前节点到尾巴节点
public void moveTotail(Node node) {
removeNode(node);
addToTail(node);
}
//添加到尾巴节点
public void addToTail(Node node) {
tail.prev.next = node;
node.prev = tail.prev;
node.next = tail;
tail.prev = node;
}
//删除最近没使用的头结点
public Node removeHead() {
Node del = head.next;
head.next = del.next;
del.next.prev = head;
return del;
}
//访问当前的key 把你访问的节点放到尾巴
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
//把最近使用的放到了尾巴
moveTotail(node);
return node.val;
}
public void printNodes(String str) {
System.out.println(str + " ");
Node cur = head.next;
while (cur != tail) {
System.out.print(cur + " ");
cur = cur.next;
}
System.out.println();
}
}
你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧
文章标题:LRUCache详解-创新互联
文章链接:http://pwwzsj.com/article/dsdjie.html