nosql起源,开源nosql数据库

B树和二叉排序树,B树和B+树的区别

一、B树的起源

创新互联公司网站设计,为客户量身定制各类网站建设业务,包括企业型、电子商务型、自适应网站建设、行业门户型等各类网站,实战经验丰富,成功案例众多。以客户利益为出发点,创新互联公司网站制作为客户规划、按需求定制网站符合企业需求、带有营销价值的网络建站方案认真对待每一个客户,我们不用口头的语言来吹擂我们的优秀,千余家的成功案例见证着我们的成长。

B树,最早是由德国计算机科学家Rudolf Bayer等人于1972年在论文 《Organization and Maintenance of Large Ordered Indexes》提出的,不过我去看了看原文,发现作者也没有解释为什么就叫B-trees了,所以把B树的B,简单地解释为Balanced或者Binary都不是特别严谨,也许作者就是取其名字Bayer的首字母命名的也说不定啊……

二、B树长啥样

还是直接看图比较清楚,图中所示,B树事实上是一种平衡的多叉查找树,也就是说最多可以开m个叉(m=2),我们称之为m阶b树,为了体现本博客的良心之处,不同于其他地方都能看到2阶B树,这里特意画了一棵5阶B树 。

总的来说,m阶B树满足以下条件:

每个节点至多可以拥有m棵子树

根节点,只有至少有2个节点(要么极端情况,就是一棵树就一个根节点,单细胞生物,即是根,也是叶,也是树)

非根非叶的节点至少有的Ceil(m/2)个子树(Ceil表示向上取整,图中5阶B树,每个节点至少有3个子树,也就是至少有3个叉)

非叶节点中的信息包括[n,A0,K1,A1,K2,A2,…,Kn,An],,其中n表示该节点中保存的关键字个数,K为关键字且KiKi+1,A为指向子树根节点的指针

从根到叶子的每一条路径都有相同的长度,也就是说,叶子节在相同的层,并且这些节点不带信息,实际上这些节点就表示找不到指定的值,也就是指向这些节点的指针为空

B树的查询过程和二叉排序树比较类似,从根节点依次比较每个结点,因为每个节点中的关键字和左右子树都是有序的,所以只要比较节点中的关键字,或者沿着指针就能很快地找到指定的关键字,如果查找失败,则会返回叶子节点,即空指针

例如查询图中字母表中的K

从根节点P开始,K的位置在P之前,进入左侧指针

左子树中,依次比较C、F、J、M,发现K在J和M之间

沿着J和M之间的指针,继续访问子树,并依次进行比较,发现第一个关键字K即为指定查找的值

三、Plus版——B+树

作为B树的加强版,B+树与B树的差异在于:

有n棵子树的节点含有n个关键字(也有认为是n-1个关键字)

所有的叶子节点包含了全部的关键字,及指向含这些关键字记录的指针,且叶子节点本身根据关键字自小而大顺序连接

非叶子节点可以看成索引部分,节点中仅含有其子树(根节点)中的最大(或最小)关键字

请点击输入图片描述

B+树的查找过程,与B树类似,只不过查找时,如果在非叶子节点上的关键字等于给定值,并不终止,而是继续沿着指针直到叶子节点位置。因此在B+树,不管查找成功与否,每次查找都是走了一条从根到叶子节点的路径

数据库软件都有那些?

企业里常用的数据库软件有Mysql、PostgreSQL、MicrosoftSQLServer、Oracle数据库、MongoDB。

1、Mysql。

MySQL原本是一个开放源码的关系数据库管理系统,原开发者为瑞典的MySQLAB公司,该公司于2008年被升阳微系统(SunMicrosystems)收购。2009年,甲骨文公司(Oracle)收购升阳微系统公司,MySQL成为Oracle旗下产品。

MySQL由于性能高、成本低、可靠性好,已经成为最流行的开源数据库,因此被广泛地应用在Internet上的中小型网站中。随着MySQL的不断成熟,它也逐渐用于更多大规模网站和应用。

2、PostgreSQL。

PostgreSQL可以说是目前功能最强大、特性最丰富和结构最复杂的开源数据库管理系统,其中有些特性甚至连商业数据库都不具备。这个起源于加州大学伯克利分校的数据库,现已成为一项国际开发项目,并且拥有广泛的用户群,尤其是在海外,目前国内使用者也越来越多。

PostgreSQL基本上算是见证了整个数据库理论和技术的发展历程,由UCB计算机教授MichaelStonebraker于1986年创建。在此之前,Stonebraker教授主导了关系数据库Ingres研究项目,88年,提出了Postgres的第一个原型设计。

MySQL号称是使用最广泛的开源数据库,而PG则被称为功能最强大的开源数据库。

3、MicrosoftSQLServer。

SQLServer是Microsoft开发的一个关系数据库管理系统(RDBMS),现在是世界上最为常用的数据库。SQLServer 现在是包括内置的商务智能工具,以及一系列的分析和报告工具,可以创建数据库、备份、复制、安全性更好以及更多。

SQLServer是一个高度可扩展的产品,可以从一个单一的笔记本电脑上运行的任何东西或以高倍云服务器网络,或在两者之间任何东西。虽然说是“任何东西”,但是仍然要满足相关的软件和硬件的要求。

4、Oracle数据库。

Oracle数据库系统是美国Oracle(甲骨文)公司提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器(Client/Server,C/S)或浏览器/服务器(Browser/Server,B/S)体系结构的数据库之一。

Oracle数据库是目前世界上使用最为广泛的数据库管理系统,作为一个通用的数据库系统,它具有完整的数据管理功能;作为一个关系数据库,它是一个完备关系的产品;作为分布式数据库它实现了分布式处理功能。

5、MongoDB

mongoDB是一个介于关系数据库和非关系数据库之间的开源产品,是最接近于关系型数据库的NoSQL数据库。它在轻量级JSON交换基础之上进行了扩展,即称为BSON的方式来描述其无结构化的数据类型。尽管如此它同样可以存储较为复杂的数据类型。

参考资料来源:百度百科——Mysql

参考资料来源:百度百科——PostgreSQL

参考资料来源:百度百科——MicrosoftSQLServer

参考资料来源:百度百科——Oracle数据库

参考资料来源:百度百科——MongoDB

华为大数据解决方案是什么?

大数据解决方案的逻辑层

逻辑层提供了一种组织您的组件的方式。这些层提供了一种方法来组织执行特定功能的组件。这些层只是逻辑层;这并不意味着支持每层的功能在独立的机器或独立的进程上运行。大数据解决方案通常由以下逻辑层组成:

1、大数据来源

2、数据改动 (massaging) 和存储层

3、分析层

4、使用层

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

大数据来源:考虑来自所有渠道的,所有可用于分析的数据。要求组织中的数据科学家阐明执行您需要的分析类型所需的数据。数据的格式和起源各不相同:

格式— 结构化、半结构化或非结构化。

速度和数据量— 数据到达的速度和传送它的速率因数据源不同而不同。

收集点— 收集数据的位置,直接或通过数据提供程序,实时或以批量模式收集数据。数据可能来自某个主要来源,比如天气条件,也有可能来自一个辅助来源,比如媒体赞助的天气频道。

数据源的位置— 数据源可能位于企业内或外部。识别您具有有限访问权的数据,因为对数据的访问会影响可用于分析的数据范围。

数据改动和存储层:此层负责从数据源获取数据,并在必要时,将它转换为适合数据分析方式的格式。例如,可能需要转换一幅图,才能将它存储在 Hadoop Distributed File System (HDFS) 存储或关系数据库管理系统 (RDBMS) 仓库中,以供进一步处理。合规性制度和治理策略要求为不同的数据类型提供合适的存储。

分析层:分析层读取数据改动和存储层整理 (digest) 的数据。在某些情况下,分析层直接从数据源访问数据。设计分析层需要认真地进行事先筹划和规划。必须制定如何管理以下任务的决策:

生成想要的分析

从数据中获取洞察

找到所需的实体

定位可提供这些实体的数据的数据源

理解执行分析需要哪些算法和工具。

使用层:此层使用了分析层所提供的输出。使用者可以是可视化应用程序、人类、业务流程或服务。可视化分析层的结果可能具有挑战。有时,看看类似市场中的竞争对手是如何做的会有所帮助。

每一层包含多种组件类型,下面将会介绍这些类型。

大数据来源

此层包含所有必要的数据源,提供了解决业务问题所需的洞察。数据是结构化、半结构化和非结构化的数据,而且来自许多来源:

1、企业遗留系统— 这些系统是企业应用程序,执行业务需要的分析并获取需要的洞察:

客户关系管理系统

结算操作

大型机应用程序

企业资源规划

Web 应用程序开发

Web 应用程序和其他数据来源扩充了企业拥有的数据。这些应用程序可使用自定义的协议和机制来公开数据。

2、数据管理系统 (DMS)— 数据管理系统存储逻辑数据、流程、策略和各种其他类型的文档:

Microsoft® Excel® 电子表格

Microsoft Word 文档

这些文档可以转换为可用于分析的结构化数据。文档数据可公开为领域实体,或者数据改动和存储层可将它转换为领域实体。

3、数据存储— 数据存储包含企业数据仓库、操作数据库和事务数据库。此数据通常是结构化数据,可直接使用或轻松地转换来满足需求。这些数据不一定存储在分布式文件系统中,具体依赖于所处的上下文。

4、智慧设备— 智慧设备能够捕获、处理和传输使用最广泛的协议和格式的信息。这方面的示例包括智能电话、仪表和医疗设备。这些设备可用于执行各种类型的分析。绝大多数智慧设备都会执行实时分析,但从智慧设备传来的信息也可批量分析。

5、聚合的数据提供程序— 这些提供程序拥有或获取数据,并以复杂的格式和所需的频率通过特定的过滤器公开它。每天都会产生海量的数据,它们具有不同的格式,以不同的速度生成,而且通过各种数据提供程序、传感器和现有企业提供。

其他数据源— 有许多数据来自自动化的来源:

地理信息:

地图

地区详细信息

位置详细信息

矿井详细信息

人类生成的内容:

社交媒体

电子邮件

博客

在线信息

传感器数据:

环境:天气、降雨量、湿度、光线

电气:电流、能源潜力等

导航装置

电离辐射、亚原子粒子等

靠近、存在等

位置、角度、位移、距离、速度、加速度

声音、声震动等

汽车、运输等

热量、热度、温度

光学、光、成像、见光度

化学

压力

流动、流体、速度

力、密度级别等

来自传感器供应商的其他数据

数据改动和存储层

因为传入的数据可能具有不同的特征,所以数据改动和存储层中的组件必须能够以各种频率、格式、大小和在各种通信渠道上读取数据:

数据获取— 从各种数据源获取数据,并将其发送到数据整理组件或存储在指定的位置中。此组件必须足够智能,能够选择是否和在何处存储传入的数据。它必须能够确定数据在存储前是否应改动,或者数据是否可直接发送到业务分析层。

数据整理— 负责将数据修改为需要的格式,以实现分析用途。此组件可拥有简单的转换逻辑或复杂的统计算法来转换源数据。分析引擎将会确定所需的特定的数据格式。主要的挑战是容纳非结构化数据格式,比如图像、音频、视频和其他二进制格式。

分布式数据存储— 负责存储来自数据源的数据。通常,这一层中提供了多个数据存储选项,比如分布式文件存储 (DFS)、云、结构化数据源、NoSQL 等。

分析层

这是从数据中提取业务洞察的层:

分析层实体识别— 负责识别和填充上下文实体。这是一个复杂的任务,需要高效的高性能流程。数据整理组件应为这个实体识别组件提供补充,将数据修改为需要的格式。分析引擎将需要上下文实体来执行分析。

分析引擎— 使用其他组件(具体来讲,包括实体鉴别、模型管理和分析算法)来处理和执行分析。分析引擎可具有支持并行处理的各种不同的工作流、算法和工具。

模型管理— 负责维护各种统计模型,验证和检验这些模型,通过持续培训模型来提高准确性。然后,模型管理组件会推广这些模型,它们可供实体识别或分析引擎组件使用。

使用层

这一层使用了从分析应用程序获取的业务洞察。分析的结果由组织内的各个用户和组织外部的实体(比如客户、供应商、合作伙伴和提供商)使用。此洞察可用于针对客户提供产品营销信息。例如,借助从分析中获取的洞察,公司可以使用客户偏好数据和位置感知,在客户经过通道或店铺时向他们提供个性化的营销信息。

该洞察可用于检测欺诈,实时拦截交易,并将它们与使用已存储在企业中的数据构建的视图进行关联。在欺诈性交易发生时,可以告知客户可能存在欺诈,以便及时采取更正操作。

此外,可以根据在数据改动层完成的分析来触发业务流程。可以启动自动化的步骤 — 例如,如果客户接受了一条可自动触发的营销信息,则需要创建一个新订单,如果客户报告了欺诈,那么可以触发对信用卡使用的阻止。

分析的输出也可由推荐引擎使用,该引擎可将客户与他们喜欢的产品相匹配。推荐引擎分析可用的信息,并提供个性化且实时的推荐。

使用层还为内部用户提供了理解、找到和导航企业内外的链锁信息的能力。对于内部使用者,为业务用户构建报告和仪表板的能力使得利益相关者能够制定精明的决策并设计恰当的战略。为了提高操作有效性,可以从数据中生成实时业务警告,而且可以监视操作性的关键绩效指标:

交易拦截器— 此组件可实时拦截高容量交易,将它们转换为一种容易被分析层理解的实时格式,以便在传入数据上执行实时分析。事务拦截器应能够集成并处理来自各种来源的数据,比如传感器、智能仪表、麦克风、摄像头、GPS 设备、ATM 和图像扫描仪。可以使用各种类型的适配器和 API 来连接到数据源。也可以使用各种加速器来简化开发,比如实时优化和流分析,视频分析,银行、保险、零售、电信和公共运输领域的加速器,社交媒体分析,以及情绪分析。

业务流程管理流程— 来自分析层的洞察可供业务流程执行语言 (BPEL) 流程、API 或其他业务流程使用,通过自动化上游和下游 IT 应用程序、人员和流程的功能,进一步获取业务价值。

实时监视— 可以使用从分析中得出的数据来生成实时警告。可以将警告发送给感兴趣的使用者和设备,比如智能电话和平板电脑。可以使用从分析组件生成的数据洞察,定义并监视关键绩效指标,以便确定操作有效性。实时数据可从各种来源以仪表板的形式向业务用户公开,以便监视系统的健康或度量营销活动的有效性。

报告引擎— 生成与传统商业智能报告类似的报告的能力至关重要。用户可基于从分析层中得到的洞察,创建临时报告、计划的报告或自助查询和分析。

推荐引擎— 基于来自分析层的分析结果,推荐引擎可向购物者提供实时的、相关的和个性化的推荐,提高电子商务交易中的转换率和每个订单的平均价值。该引擎实时处理可用信息并动态地响应每个用户,响应基于用户的实时活动、存储在 CRM 系统中的注册客户信息,以及非注册客户的社交概况。

可视化和发现— 数据可跨企业内外的各种联邦的数据源进行导航。数据可能具有不同的内容和格式,所有数据(结构化、半结构化和非结构化)可组合来进行可视化并提供给用户。此能力使得组织能够将其传统的企业内容(包含在企业内容管理系统和数据仓库中)与新的社交内容(例如 tweet 和博客文章)组合到单个用户界面中。

垂直层

影响逻辑层(大数据来源、数据改动和存储、分析和使用层)的所有组件的各方面都包含在垂直层中:

信息集成

大数据治理

系统管理

服务质量

信息集成

大数据应用程序从各种数据起源、提供程序和数据源获取数据,并存储在 HDFS、NoSQL 和 MongoDB 等数据存储系统中。这个垂直层可供各种组件使用(例如数据获取、数据整理、模型管理和交易拦截器),负责连接到各种数据源。集成将具有不同特征(例如协议和连接性)的数据源的信息,需要高质量的连接器和适配器。可以使用加速器连接到大多数已知和广泛使用的来源。这些加速器包括社交媒体适配器和天气数据适配器。各种组件还可以使用这一层在大数据存储中存储信息,从大数据存储中检索信息,以便处理这些信息。大多数大数据存储都提供了服务和 API 来存储和检索该信息。

大数据治理

数据治理涉及到定义指南来帮助企业制定有关数据的正确决策。大数据治理有助于处理企业内或从外部来源传入的数据的复杂性、量和种类。在将数据传入企业进行处理、存储、分析和清除或归档时,需要强有力的指南和流程来监视、构建、存储和保护数据。

除了正常的数据治理考虑因素之外,大数据治理还包含其他因素:

1、管理各种格式的大量数据。

2、持续培训和管理必要的统计模型,以便对非结构化数据和分析进行预处理。请记住,设置处理非结构化数据时的重要一步。

3、为外部数据设置有关其保留和使用的策略和合规性制度。

4、定义数据归档和清除策略。

5、创建如何跨各种系统复制数据的策略。

6、设置数据加密策略。

服务质量层

此层复杂定义数据质量、围绕隐私和安全性的策略、数据频率、每次抓取的数据大小和数据过滤器:

数据质量

1、完整地识别所有必要的数据元素

2、以可接受的新鲜度提供数据的时间轴

3、依照数据准确性规则来验证数据的准确性

4、采用一种通用语言(数据元组满足使用简单业务语言所表达的需求)

5、依据数据一致性规则验证来自多个系统的数据一致性

6、在满足数据规范和信息架构指南基础上的技术符合性

围绕隐私和安全的策略

需要策略来保护敏感数据。从外部机构和提供程序获取的数据可能包含敏感数据(比如 Facebook 用户的联系信息或产品定价信息)。数据可以来源于不同的地区和国家,但必须进行相应的处理。必须制定有关数据屏蔽和这类数据的存储的决策。考虑以下数据访问策略:

A、数据可用性

B、数据关键性

C、数据真实性

D、数据共享和发布

E、数据存储和保留,包括能否存储外部数据等问题。如果能够存储数据,数据可存储多长时间?可存储何种类型的数据?

F、数据提供程序约束(政策、技术和地区)

G、社交媒体使用条款

数据频率

提供新鲜数据的频率是多少?它是按需、连续还是离线的?

抓取的数据大小

此属性有助于定义可抓取的数据以及每次抓取后可使用的数据大小。

过滤器

标准过滤器会删除不想要的数据和数据中的干扰数据,仅留下分析所需的数据。

系统管理

系统管理对大数据至关重要,因为它涉及到跨企业集群和边界的许多系统。对整个大数据生态系统的健康的监视包括:

A、管理系统日志、虚拟机、应用程序和其他设备

B、关联各种日志,帮助调查和监视具体情形

C、监视实时警告和通知

D、使用显示各种参数的实时仪表板

E、引用有关系统的报告和详细分析

F、设定和遵守服务水平协议

G、管理存储和容量

G、归档和管理归档检索

I、执行系统恢复、集群管理和网络管理

J、策略管理

结束语

对开发人员而言,层提供了一种对大数据解决方案必须执行的功能进行分类的途径,为组织建议必需执行这些功能所需的代码。但是,对于想要从大数据获取洞察的业务用户,考虑大数据需求和范围通常会有所帮助。原子模式解决了访问、处理、存储和使用大数据的机制,为业务用户提供了一种解决需求和范围的途径。下一篇文章将介绍用于此用途的原子模式。

阿里云分布式数据库服务DRDS?谁使用过 简单讲讲!

淘宝开源的TDDL和cobar的结合,放到了阿里云上就是DRDS,是商品,服务,可以购买使用的。可以在阿里云官网上注册免费试用。

=====================================================

随着互联网时代的到来,计算机要管理的数据量呈指数级别地飞速上涨,而我们却完全无法对用户数做出准确预估。我们的系统所需要支持的用户数,很可能在短短的一个月内突然爆发式地增长几千倍,数据也很可能快速地从原来的几百GB飞速上涨到了几百个TB。如果在这爆发的关键时刻,系统不稳定或无法访问,那么对于业务将会是毁灭性的打击。

伴随着这种对于系统性能、成本以及扩展性的新需要,以HBase、MongoDB为代表的NoSQL数据库和以阿里DRDS、VoltDB、ScaleBase为代表的分布式NewSQL数据库如雨后春笋般不断涌现出来。

本文将会介绍阿里DRDS的技术理念、发展历程、技术特性等内容。

DRDS设计理念

从20世纪70年代关系数据库创立开始,其实大家在数据库上的追求就从未发生过变化:更快的存取数据,可以按需扩缩以承载更大的访问量和更大的数据量,开发容易,硬件成本低,我们可以把这叫做数据库领域的圣杯。

为了支撑更大的访问量和数据量,我们必然需要分布式数据库系统,然而分布式系统又必然会面对强一致性所带来的延迟提高的问题,因为网络通信本身比单机内通信代价高很多,这种通信的代价就会直接增加系统单次提交的延迟。延迟提高会导致数据库锁持有时间变长,使得高冲突条件下分布式事务的性能不升反降(这个具体可以了解一下Amdahl定律),甚至性能距离单机数据库都还有明显的差距。

从上面的说明,我们可以发现,问题的关键并不是分布式事务做不出来,而是做出来了却因为性能太差而没有什么卵用。数据库领域的高手们努力了40年,但至今仍然没有人能够很好地解决这个问题,Google Spanner的开发负责人就经常在他的Blog上谈论延迟的问题,相信也是饱受这个问题的困扰。

面对这个难题,传统的关系数据库选择了放弃分布式的方案,因为在20世纪70~80年代,我们的数据库主要被用来处理企业内的各类数据,面对的用户不过几千人,而数据量最多也就是TB级别。用单台机器来处理事务,用个磁盘阵列处理一下磁盘容量不够的问题,基本上就能解决一切问题了。

然而,信息化和互联网的浪潮改变了这一切,我们突然发现,我们服务的对象发生了根本性变化,从原来的几千人,变成了现在的几亿人,数据量也从TB级别到了PB级别甚至更多。存在单点的单机系统无论如何努力,都会面对系统处理能力的天花板。原来的这条路,看起来是走不下去了,我们必须想办法换一条路来走。

可是,分布式数据库所面对的强一致性难题却像一座高山,人们努力了无数个日日夜夜,但能翻越这座山的日子看来仍然遥遥无期。

于是,有一群人认为,强一致性这件事看来不怎么靠谱,那彻底绕开这个问题是不是个更好的选择?他们发现确实有那么一些场景是不需要强一致事务的,甚至连SQL都可以不要,最典型的就是日志流水的记录与分析这类场景。而去掉了事务和SQL,接口简单了,性能就更容易得到提升,扩展性也更容易实现,这就是NoSQL系统的起源。

虽然NoSQL解决了性能和扩展性问题,但这种绕开问题的方法给用户带来了很多困扰,系统的开发成本也大大提升。这时候就有另外一群人,他们觉得用户需要SQL,觉得用户也需要事务,问题的关键在于我们要努力地往圣杯的方向不断前进。在保持系统的扩展性和性能的前提下,付出尽可能小的代价来满足业务对数据库的需要。这就是NewSQL这个理念的由来。

DRDS也是一个NewSQL的系统,它与ScaleBase、VoltDB等系统类似,都希望能够找到一条既能保持系统的高扩展性和高性能,又能尽可能保持传统数据库的ACID事务和SQL特性的分布式数据库系统。

DRDS发展历程

在一开始,TDDL的主要功能就是做数据库切分,一个或一组SQL请求提交到TDDL,TDDL进行规则运算后得知SQL应该被分发到哪个机器,直接将SQL转发到对应机器即可(如图1)。

图1 TDDL数据库切分

开始的时候,这种简单的路由策略能够满足用户的需要,我们开始的那些应用,就是通过这样非常简单的方式完成了他所有的应用请求。我们也认为,这种方案简单可靠,已经足够好用了。

然而,当我们服务的应用从十几个增长到几百个的时候,大量的中小应用加入,大家纷纷表示,原来的方案限制太大,很多应用其实只是希望做个读写分离,希望能有更好的SQL兼容性。

于是,我们做了第一次重大升级,在这次升级里,我们提出了一个重要的概念就是三层架构,Matrix对应数据库切分场景,对SQL有一定限制,Group对应读写分离和高可用场景,对SQL几乎没有限制。如图2所示。

图2 数据库升级为三层架构

这种做法立刻得到了大家的认可,TDDL所提供的读写分离、分库分表等核心功能,也成为了阿里集团内数据库领域的标配组件,在阿里的几乎所有应用上都有应用。最为难得的是,这些功能从上线后,到现在已经经历了多年双11的严酷考验,从未出现过严重故障(p0、p1级别故障属于严重故障)。数据库体系作为整个应用系统的重中之重,能做到这件事,真是非常不容易。

随着核心功能的稳定,自2010年开始,我们集中全部精力开始关注TDDL后端运维系统的完善与改进性工作。在DBA团队的给力配合下,围绕着TDDL,我们成功做到了在线数据动态扩缩、异步索引等关键特征,同时也比较成功地构建了一整套分布式数据库服务管控体系,用户基本上可以完全自助地完成整套数据库环境的搭建与初始化工作。

大概是2012年,我们在阿里云团队的支持下,开始尝试将TDDL这套体系输出到阿里云上,也有了个新的名字:阿里分布式数据库服务(DRDS),希望能够用我们的技术服务好更多的人。

不过当我们满怀自信地把自己的软件拿到云上的时候,却发现我们的软件距离用户的要求差距很大。在内部因为有DBA的同学们帮助进行SQL review,所以SQL的复杂度都是可控的。然而到了云上,看了各种渠道提过来的兼容性需求,我们经常是不自觉地发出这样的感叹:“啊?原来这种语法MySQL也是可以支持的?”

于是,我们又进行了架构升级,这次是以兼容性为核心目标的系统升级工作,希望能够在分布式场景下支持各类复杂的SQL,同时也将阿里这么多年来在分布式事务上的积累都带到了DRDS里面。

这次架构升级,我们的投入史无前例,用了三年多才将整个系统落地完成。我们先在内部以我们自己的业务作为首批用户上线,经过了内部几百个应用的严酷考验以后,我们才敢拿到云上,给到我们的最终用户使用。

目前,我们正在将TDDL中更多的积累输出到云上,同时也努力优化我们的用户界面。PS:其实用户界面优化对我们这种专注于高性能后端技术的团队来说,才是最大的技术挑战,连我也去学了AngularJS,参与了用户UI编。

DRDS主要功能介绍

发展历史看完了,下面就由我来介绍一下目前我们已经输出到云上的主要功能。

【分布式SQL执行引擎】

分布式SQL引擎主要的目的,就是实现与单机数据库SQL引擎的完全兼容。目前我们的SQL引擎能够做到与MySQL的SQL引擎全兼容,包括各类join和各类复杂函数等。他主要包含SQL解析、优化、执行和合并四个流程,如图3中绿色部分。

图3 SQL引擎实现的主要流程

虽然SQL是兼容的,但是分布式SQL执行算法与单机SQL的执行算法却完全不同,原因也很简单,网络通信的延迟比单机内通信的延迟大得多。举个例子说明一下,我们有份文件要从一张纸A上誊写到另外一张纸B上,单机系统就好比两张纸都在同一个办公室里,而分布式数据库则就像是一张纸在北京,一张纸在杭州。

自然地,如果两张纸在同一个办公室,因为传输距离近,逐行誊写的效率是可以接受的。而如果距离是北京到杭州,用逐行誊写的方式,就立刻显得代价太高了,我们总不能看一行,就打个“飞的”去杭州写下来吧。在这种情况下,还是把纸A上的信息拍个照片,【一整批的】带到杭州去处理,明显更简单一些。这就是分布式数据库特别强调吞吐调优的原因,只要是涉及到跨机的所有查询,都必须尽可能的积攒一批后一起发送,以减少系统延迟提高带来的不良影响。

【按需数据库集群平滑扩缩】

DRDS允许应用按需将新的单机存储加入或移出集群,DRDS则能够保证应用在迁移流程中实现不停机扩容缩容。

图4 DRDS按需进行平滑扩缩

在内部的数据库使用实践中,这个功能的一个最重要应用场景就是双11了。在双11之前,我们会将大批的机器加入到我们的数据库集群中,抗过了双11,这批机器就会下线。

当DRDS来到云上,我们发现双11其实不仅仅只影响阿里内部的系统。在下游的各类电商辅助性系统其实也面对巨大压力。在双11前5天,网聚宝的熊总就找到我说,担心撑不过双11的流量,怕系统挂。于是我们就给他介绍了这个自动扩容的功能怎么用,他买了一个月的数据库,挂接在DRDS上。数据库能力立刻翻倍,轻松抗过了双11,也算是我印象比较深刻的一个案例了。

因为我们完全无法预测在什么时间点系统会有爆发性的增长,而如果在这时候系统因为技术原因不能使用,就会给整个业务带来毁灭性的影响,风口一旦错过,就追悔莫及了。我想这就是云计算特别强调可扩展能力的原因吧。

【小表广播】

小表广播也是我们在分布式数据库领域内最常用的工具之一,他的核心目的其实都是一个——尽可能让查询只发生在单机。

让我们用一个例子来说明,小表广播的一般使用场景。

图5 小表广播场景

图5中,如果我想知道买家id等于0的用户在商城里面买了哪些商品,我们一般会先将这两个表join起来,然后再用where平台名=”商城” and buyerID = 0找到符合要求的数据。然而这种join的方式,会导致大量的针对左表的网络I/O。如果要取出的数据量比较大,系统延迟会明显上升。

这时候,为了提升性能,我们就必须要减少跨机join的网络代价。我们比较推荐应用做如下处理,将左表复制到右表的每一个库上。这样,join操作就由分布式join一下变回到本地join,系统的性能就有很大的提升了,如图6所示。

图6

【分布式事务套件】

在阿里巴巴的业务体系中存在非常多需要事务类的场景,下单减库存,账务,都是事务场景最集中的部分。

而我们处理事务的方法却和传统应用处理事务的方案不大一样,我们非常强调事务的最终一致性和异步化。利用这种方式,能够极大地降低分布式系统中锁持有的时间,从而极大地提升系统性能。

图7 DRDS分布式事务解决套件

这种处理机制,是我们分布式事务能够以极低成本大量运行的最核心法门。在DRDS平台内,我们将这些方案产品化,为了DRDS的分布式事务解决套件。

利用他们,能够让你以比较低的成本,实现低延迟,高吞吐的分布式事务场景。

DRDS的未来

阿里分布式数据库服务DRDS上线至今,大家对这款产品的热情超出了我们的预期,短短半年内已经有几千个申请。

尽管还在公测期,但是大家就已经把关系到身家性命的宝贵在线数据业务放到了DRDS上,我能够感受到这份沉甸甸的信赖,也不想辜负这份信赖。

经过阿里内部几千个应用的不断历练,DRDS已经积累出一套强大的分布式SQL执行引擎和和一整套分布式事务套件。

我也相信,这些积累能够让用户在基本保持单机数据库的使用习惯的前提下,享受到分布式数据库高性能可扩展的好处。

在平时的DRDS支持过程中,我面对最多的问题就是,DRDS能不能够在不改变任何原有业务逻辑和代码的前提下,实现可自由伸缩和扩展呢?十分可惜的是,关系数据库发展至今,还没有找到既能保留传统数据库一切特性,又能实现高性能可扩展数据库的方法。

然而,虽不能至,吾心向往之!我们会以“可扩展,高性能”为产品核心,坚定地走在追寻圣杯的路上,并坚信最终我们一定能够找寻到它神圣的所在。

作者简介:王晶昱,花名沈询,阿里巴巴资深技术专家。目前主要负责阿里的分布式数据库DRDS(TDDL)和阿里的分布式消息服务ONS(RocketMQ/Notify)两个系统。

大数据时代发展历程是什么?

大数据技术发展史:大数据的前世今生

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。

你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。

现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。

因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。

当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。

两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。

如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。

我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。

Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。

2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。

同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。

这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。

这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。

在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。

同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算。

而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。

在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。

我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不群,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。

事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。

但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。

正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗的说,就是要在风口中飞翔。

上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。

此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。

希望对您有所帮助!~

网络安全未来发展怎么样?

在信息化的现代,网络安全产业成为保障“新基建”安全的重要基石,我国网络安全行业市场规模一直呈现高速增长态势。未来,随着5G网络、人工智能、大数据等新型网络技术在各个领域的深入开展,其将为网络安全企业的发展提供新的机遇。

随着科技的进步和社会的发展,网络安全的概念和内涵不断演进。其发展历程可分为起源期、萌芽期、成长期和加速期四个时期,分别对应通信加密时代、计算机安全时代、信息安全时代以及网络空间安全时代。

目前网络安全正处于网络空间安全时代的加速期:2014年中央网络安全和信息化领导小组成立后,网络安全法、等保2.0等政策不断出台,网络安全上升为国家战略。

与信息安全时代的区别在于网络边界逐渐模糊或消失,仅凭传统的边界安全已不能做到有效防护,防护理念和技术发生深刻改变,主动安全逐渐兴起。安全解决方案和安全服务也越来越被重视。

从我国网络安全市场规模来看,2013年开始,随着国家在科技专项上的支持加大、用户需求扩大、企业产品逐步成熟和不断创新,网络安全产业依然处在快速成长阶段,近年来,受下游需求及政府政策的推动,我国网络安全企业数量不断增加,网络安全产业规模也不断发展。

根据中国网络安全产业联盟(CCIA)披露数据,2015-2019年,市场规模增速始终保持在17%以上,2019年我国网络安全市场规模达到478亿元,CCIA预计2020年我国网络安全市场规模为553亿元,同比增长15.69%。

按照产品结构划分,网络安全可以划分为安全硬件、安全软件及安全服务三大类,而每一大类产品包含众多的细分市场,如安全硬件包括防火墙、VPN、入侵检测与防御等,安全软件包括防病毒软件、终端安全软件、邮件安全软件等,安全服务包括咨询、集成、培训、运维等。

IDC表示,2020年,安全硬件在中国整体网络安全支出中将继续占据绝对主导地位,占比高达59.1%,安全软件和安全服务支出比例分别为18.4%和22.5%。

网络安全行业的发展一直是威胁、技术和监管等方面相互博弈的结果,最终达到一个均衡。新的威胁、技术以及新的监管要求,都会带来市场需求的增长。而对安全企业来说,需要密切关注这些力量的变化,推出适合的产品和服务,这样才能在市场上处于不败之地。

随着国家政策对我国网络安全行业的保驾护航,以及网络安全需求日益快速增加,政府、企业、个人在网络安全保障方面的投入都将不断增加,产业发展的驱动力强劲;多重利好因素促使我国网络安全行业市场规模保持着较快的增速增长。

结合IDC、CCIA等的预测,预计到2026年我国网络安全行业市场规模将持续增长到1444亿元,年复合增长率约为17.6%。

—— 以上数据及分析请参考于前瞻产业研究院《中国网络安全行业发展前景预测与投资战略规划分析报告》


当前名称:nosql起源,开源nosql数据库
转载注明:http://pwwzsj.com/article/dsehgjo.html