go语言内存分配方法,go语言内存占用
Go语言中new和 make的区别详解
1、new 的主要特性
成都创新互联成立于2013年,先为青秀等服务建站,青秀等地企业,进行企业商务咨询服务。为青秀企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
首先 new 是内建函数,定义也很简单:
func new(Type) *Type
内建函数 new 用来分配内存,第一个参数是一个类型,不是一个值,返回值是一个指向新分配类型零值的指针
实现一个类似 new 的功能:
func newInt() *int {
var i int
return i
}
someInt := newInt()
函数的功能跟 someInt := new(int) 一模一样。定义 new 开头的函数时,出于约定也应该返回类型的指针。
2、make 的主要特性
make 也是内建函数,定义比 new 多了一个参数,返回值也不同:
func make(Type, size IntegerType) Type
内建函数 make 用来为 slice,map 或 chan 类型分配内存和初始化一个对象(注意:只能用在这三种类型上),跟 new 类似,第一个参数也是一个类型而不是一个值,跟 new 不同的是,make 返回类型的引用而不是指针,而返回值也依赖于具体传入的类型,具体说明如下:
Slice: 第二个参数 size 指定了长度,容量和长度相同。
可以传入第三个参数来指定不同的容量值,但必须不能比长度值小。
比如 make([]int, 0, 10)
Map: 根据 size 大小来初始化分配内存,不过分配后的 map 长度为 0,如果 size 被忽略了,那么会在初始化分配内存时分配一个小尺寸的内存
Channel: 管道缓冲区依据缓冲区容量被初始化。如果容量为 0 或者忽略容量,管道没有缓冲区。
3、总结
new 的作用是初始化一个指向类型的指针(*T),make 的作用是为 slice,map 或 chan 初始化并返回引用(T)。
go语言中怎么给结构体分配内存
随便怎么写啊,共享内存获取到不是给你一个内存地址,这里称之为des么,直接通过des地址访问啊,比如你要写2个结构体进去,第一个memcpy写到des,第二个可以(memcpy到des+结构体大小)的地址指向的内存上,
Go语言有什么优势?
GO语言的优势:可直接编译成机器码,不依赖其他库,glibc的版本有一定要求,部署就是扔一个文件上去就完成了。静态类型语言,但是有动态语言的感觉,静态类型的语言就是可以在编译的时候检查出来隐藏的大多数问题,动态语言的感觉就是有很多的包可以使用,写起来的效率很高。语言层面支持并发,这个就是Go最大的特色,天生的支持并发,我曾经说过一句话,天生的基因和整容是有区别的,大家一样美丽,但是你喜欢整容的还是天生基因的美丽呢?Go就是基因里面支持的并发,可以充分的利用多核,很容易的使用并发。内置runtime,支持垃圾回收,这属于动态语言的特性之一吧,虽然目前来说GC不算完美,但是足以应付我们所能遇到的大多数情况,特别是Go1.1之后的GC。简单易学,Go语言的作者都有C的基因,那么Go自然而然就有了C的基因,那么Go关键字是25个,但是表达能力很强大,几乎支持大多数你在其他语言见过的特性:继承、重载、对象等。丰富的标准库,Go目前已经内置了大量的库,特别是网络库非常强大,我最爱的也是这部分。内置强大的工具,Go语言里面内置了很多工具链,最好的应该是gofmt工具,自动化格式化代码,能够让团队review变得如此的简单,代码格式一模一样,想不一样都很困难。跨平台编译,如果你写的Go代码不包含cgo,那么就可以做到window系统编译linux的应用,如何做到的呢?Go引用了plan9的代码,这就是不依赖系统的信息。Go语言这么多的优势,你还不想学吗?我记得当时我看的是黑马程序员的视频,我对他们视频的印象就是通俗易懂,就是好!
go程序如何分配堆栈的
在Go语言中有一些调试技巧能帮助我们快速找到问题,有时候你想尽可能多的记录异常但仍觉得不够,搞清楚堆栈的意义有助于定位Bug或者记录更完整的信息。
本文将讨论堆栈跟踪信息以及如何在堆栈中识别函数所传递的参数。
Functions
先从这段代码开始:
Listing 1
01 package main
02
03 func main() {
04 slice := make([]string, 2, 4)
05 Example(slice, "hello", 10)
06 }
07
08 func Example(slice []string, str string, i int) {
09 panic("Want stack trace")
10 }
Example函数定义了3个参数,1个string类型的slice, 1个string和1个integer, 并且抛出了panic,运行这段代码可以看到这样的结果:
Listing 2
Panic: Want stack trace
goroutine 1 [running]:
main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:9 +0x64
main.main()
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:5 +0x85
goroutine 2 [runnable]:
runtime.forcegchelper()
/Users/bill/go/src/runtime/proc.go:90
runtime.goexit()
/Users/bill/go/src/runtime/asm_amd64.s:2232 +0x1
goroutine 3 [runnable]:
runtime.bgsweep()
/Users/bill/go/src/runtime/mgc0.go:82
runtime.goexit()
/Users/bill/go/src/runtime/asm_amd64.s:2232 +0x1
堆栈信息中显示了在panic抛出这个时间所有的goroutines状态,发生的panic的goroutine会显示在最上面。
Listing 3
01 goroutine 1 [running]:
02 main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:9 +0x64
03 main.main()
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:5 +0x85
第1行显示最先发出panic的是goroutine 1, 第二行显示panic位于main.Example中, 并能定位到该行代码,在本例中第9行引发了panic。
下面我们关注参数是如何传递的:
Listing 4
// Declaration
main.Example(slice []string, str string, i int)
// Call to Example by main.
slice := make([]string, 2, 4)
Example(slice, "hello", 10)
// Stack trace
main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
这里展示了在main中带参数调用Example函数时的堆栈信息,比较就能发现两者的参数数量并不相同,Example定义了3个参数,堆栈中显示了6个参数。现在的关键问题是我们要弄清楚它们是如何匹配的。
第1个参数是string类型的slice,我们知道在Go语言中slice是引用类型,即slice变量结构会包含三个部分:指针、长度(Lengthe)、容量(Capacity)
Listing 5
// Slice parameter value
slice := make([]string, 2, 4)
// Slice header values
Pointer: 0x2080c3f50
Length: 0x2
Capacity: 0x4
// Declaration
main.Example(slice []string, str string, i int)
// Stack trace
main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
因此,前面3个参数会匹配slice, 如下图所示:
Figure 1
figure provided by Georgi Knox
我们现在来看第二个参数,它是string类型,string类型也是引用类型,它包括两部分:指针、长度。
Listing 6
// String parameter value
"hello"
// String header values
Pointer: 0x425c0
Length: 0x5
// Declaration
main.Example(slice []string, str string, i int)
// Stack trace
main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
可以确定,堆栈信息中第4、5两个参数对应代码中的string参数,如下图所示:
Figure 2
figure provided by Georgi Knox
最后一个参数integer是single word值。
Listing 7
// Integer parameter value
10
// Integer value
Base 16: 0xa
// Declaration
main.Example(slice []string, str string, i int)
// Stack trace
main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
现在我们可以匹配代码中的参数到堆栈信息了。
Figure 3
figure provided by Georgi Knox
Methods
如果我们将Example作为结构体的方法会怎么样呢?
Listing 8
01 package main
02
03 import "fmt"
04
05 type trace struct{}
06
07 func main() {
08 slice := make([]string, 2, 4)
09
10 var t trace
11 t.Example(slice, "hello", 10)
12 }
13
14 func (t *trace) Example(slice []string, str string, i int) {
15 fmt.Printf("Receiver Address: %p\n", t)
16 panic("Want stack trace")
17 }
如上所示修改代码,将Example定义为trace的方法,并通过trace的实例t来调用Example。
再次运行程序,会发现堆栈信息有一点不同:
Listing 9
Receiver Address: 0x1553a8
panic: Want stack trace
01 goroutine 1 [running]:
02 main.(*trace).Example(0x1553a8, 0x2081b7f50, 0x2, 0x4, 0xdc1d0, 0x5, 0xa)
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:16 +0x116
03 main.main()
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:11 +0xae
首先注意第2行的方法调用使用了pointer receiver,在package名字和方法名之间多出了"*trace"字样。另外,参数列表的第1个参数标明了结构体(t)地址。我们从堆栈信息中看到了内部实现细节。
Packing
如果有多个参数可以填充到一个single word, 则这些参数值会合并打包:
Listing 10
01 package main
02
03 func main() {
04 Example(true, false, true, 25)
05 }
06
07 func Example(b1, b2, b3 bool, i uint8) {
08 panic("Want stack trace")
09 }
这个例子修改Example函数为4个参数:3个bool型和1个八位无符号整型。bool值也是用8个bit表示,所以在32位和64位架构下,4个参数可以合并为一个single word。
Listing 11
01 goroutine 1 [running]:
02 main.Example(0x19010001)
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:8 +0x64
03 main.main()
/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/
temp/main.go:4 +0x32
这是本例的堆栈信息,看下图的具体分析:
Listing 12
// Parameter values
true, false, true, 25
// Word value
Bits Binary Hex Value
00-07 0000 0001 01 true
08-15 0000 0000 00 false
16-23 0000 0001 01 true
24-31 0001 1001 19 25
// Declaration
main.Example(b1, b2, b3 bool, i uint8)
// Stack trace
main.Example(0x19010001)
以上展示了参数值是如何匹配到4个参数的。当我们看到堆栈信息中包括十六进制值,需要知道这些值是如何传递的。
【golang】内存逃逸常见情况和避免方式
因为如果变量的内存发生逃逸,它的生命周期就是不可知的,其会被分配到堆上,而堆上分配内存不能像栈一样会自动释放,为了解放程序员双手,专注于业务的实现,go实现了gc垃圾回收机制,但gc会影响程序运行性能,所以要尽量减少程序的gc操作。
1、在方法内把局部变量指针返回,被外部引用,其生命周期大于栈,则溢出。
2、发送指针或带有指针的值到channel,因为编译时候无法知道那个goroutine会在channel接受数据,编译器无法知道什么时候释放。
3、在一个切片上存储指针或带指针的值。比如[]*string,导致切片内容逃逸,其引用值一直在堆上。
4、因为切片的append导致超出容量,切片重新分配地址,切片背后的存储基于运行时的数据进行扩充,就会在堆上分配。
5、在interface类型上调用方法,在Interface调用方法是动态调度的,只有在运行时才知道。
1、go语言的接口类型方法调用是动态,因此不能在编译阶段确定,所有类型结构转换成接口的过程会涉及到内存逃逸发生,在频次访问较高的函数尽量调用接口。
2、不要盲目使用变量指针作为参数,虽然减少了复制,但变量逃逸的开销更大。
3、预先设定好slice长度,避免频繁超出容量,重新分配。
当前文章:go语言内存分配方法,go语言内存占用
文章链接:http://pwwzsj.com/article/dsshppj.html