Python怎么构建区块链
这篇文章主要介绍了Python怎么构建区块链的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python怎么构建区块链文章都会有所收获,下面我们一起来看看吧。
目前创新互联已为上千家的企业提供了网站建设、域名、网页空间、网站运营、企业网站设计、小店网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
区块链
区块链是在计算机网络的节点之间共享数据的分类账(分布式数据库)。作为数据库,区块链以电子格式储存信息。区块链的创新之处在于它保证了数据记录的安全性和真实性,可信性(不需要没有可信任的第三方)。
区块链和典型数据库的区别是数据结构。区块链以block
的方式收集信息。
block
block
是一种能永久记录加密货币交易数据(或其他用途)的一种数据结构。类似于链表。一个block
记录了一些火所有尚未被验证的最新交易。验证数据后,block
将关闭,之后会创建一个新的block
来输入和验证新的交易。因此,一旦写入,永久不能更改和删除。
block
是区块链中存储和加密信息的地方block
由长数字标识,其中包括先前加密块的加密交易信息和新的交易信息在创建之前,
block
以及其中的信息必须由网络验证
以下是一个简单的例子:
block = { 'index': 1, 'timestamp': 1506057125.900785, 'transactions': [ { 'sender': "8527147fe1f5426f9dd545de4b27ee00", 'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f", 'amount': 5, } ], 'proof': 324984774000, 'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824" }
目标
区块链的目标是允许数字信息被记录和分发,但不能编辑。通过这种方式,区块链成为了不可变分类账或无法更改、删除和销毁的交易记录的基础。
去中心化
想象一下,一家公司拥有10000台服务器,用于维护一个包含所有客户信息的数据库。公司的所有服务器都在一个仓库中,可以完全控制每台服务器。这就提供了单点故障。如果那个地方停电了怎么办?如果他的网络连接被切断了怎么办?在任何情况下,数据都会丢失或损坏。
构建
区块链类
我们将创建一个BlockChain
类,构造函数创建一个空列表来存储区块链,再创建一个空列表来存储交易。创建block_chain.py
# block_chain.py class Blockchain: def __init__(self) -> None: self.chain = [] self.current_transactions = [] def new_block(self): # Creates a new Block and adds it to the chain pass def new_transaction(self): # Adds a new transaction to the list of transactions pass @staticmethod def hash(block): # Hashes a Block pass @property def last_block(self): # Returns the last Block in the chain pass
添加交易
我们需要一种将交易添加到区块的方法。new_transaction
负责这个
class Blockchain(object): ... def new_transaction(self, sender, recipient, amount) -> int: self.current_transactions.append({ 'sender': sender, 'recipient': recipient, 'amount': amount, }) return self.last_block['index'] + 1
在 new_transaction
将交易添加到列表后,它返回交易将被添加到的块的索引——下一个要挖掘的块。这将在以后对提交交易的用户有用。
创建新blocks
当我们的区块链被实例化时,我们需要为它播种一个创世块——一个没有前辈的块。我们还需要向我们的创世块添加一个“证明”,这是挖掘的结果(或工作量证明)。除了在我们的构造函数中创建创世块之外,我们还将充实 new_block()、new_transaction() 和 hash() 的方法:
import hashlib import json from time import time class Blockchain: def __init__(self) -> None: self.chain = [] self.current_transactions = [] # Create the genesis block self.new_block(previous_hash=1, proof=100) def new_block(self, proof, previous_hash=None) -> dict: block = { 'index': len(self.chain) + 1, 'timestamp': time(), 'transactions': self.current_transactions, 'proof': proof, 'previous_hash': previous_hash or self.hash(self.chain[-1]), } self.current_transactions = [] self.chain.append(block) return block def new_transaction(self, sender, recipient, amount) -> int: self.current_transactions.append( { 'sender': sender, 'recipient': recipient, 'amount': amount, } ) return self.last_block['index'] + 1 @property def last_block(self) -> dict: # Returns the last Block in the chain return self.chain[-1] @staticmethod def hash(block) -> str: block_string = json.dumps(block, sort_keys=True).encode() return hashlib.sha256(block_string).hexdigest()
到这里,我们几乎完成了代表我们的区块链。但此时,你一定想知道新区块是如何创建、锻造或开采的。
POW
工作量证明算法 (PoW) 是在区块链上创建或挖掘新块的方式,它的目标是发现一个解决问题的数字。这个数字必须很难找到但很容易被网络上的任何人验证。PoW广泛用于加密货币挖掘,用于验证交易和挖掘新代币。由于PoW,比特币和其他加密货币交易可以以安全的方式进行点对点处理,而无需受信任的第三方。
让我们实现一个类似的算法:
class Blockchain(object): def proof_of_work(self, last_proof) -> int: proof = 0 while self.valid_proof(last_proof, proof) is False: proof += 1 return proof @staticmethod def valid_proof(last_proof, proof) -> bool: guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == '0000'
API
为了使区块链能够交互,我们需要一个将其置于web服务器上。这里我们是用Flask
框架。
如果没有安装,需要安装flask
pip install flask
我们的服务器将在我们的区块链网络中形成单一节点,在同级目录下创建一个app.py
:
from uuid import uuid4 from time import time from textwrap import dedent from flask import Flask, jsonify, request from block_chain import Blockchain # 实例化应用 app = Flask(__name__) # 创建随机节点名称 node_identifier = str(uuid4()).replace('_', '') # 实例化block_chain类 block_chain = Blockchain() # 创建/mine端点 @app.route('/mine', methods=['GET']) def mine(): block_chain.new_transaction( sender="0", recipient=node_identifier, amount=1, ) last_block = block_chain.last_block last_proof = last_block['proof'] proof = block_chain.proof_of_work(last_proof) previous_hash = block_chain.hash(last_block) block = block_chain.new_block(proof, previous_hash) response = { 'message': "New Block Forged", 'index': block['index'], 'transactions': block['transactions'], 'proof': block['proof'], 'previous_hash': block['previous_hash'], } return jsonify(response), 200 @app.route('/transactions/new', methods=['POST']) def new_transaction(): return "We'll add a new transaction" @app.route('/chain', methods=['GET']) def full_chain(): response = { 'chain': block_chain.chain, 'length': len(block_chain.chain), } return jsonify(response), 200 # 修改端口号 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
然后运行
flask run
通过api软件(本次使用的是api fox)来发送请求:
注册新节点
区块链的全部意义在于它们应该去中心化。如果想要网络中有多个节点,必须采用共识算法。在我们可以实施共识算法之前,我们需要一种方法让节点知道网络上的相邻节点。我们网络上的每个节点都应该保留网络上其他节点的注册表。因此,我们需要更多的端点:
... from urllib.parse import urlparse ... class Blockchain: def __init__(self) -> None: ... self.nodes = set() ... def register_node(self, address) -> None: parsed_url = urlparse(address) self.nodes.add(parsed_url.netloc)
冲突
冲突是指一个节点与另一个节点有不同的链。为了解决这个问题,我们将制定最长有效链为权威的规则。使用此算法,我们在网络中的节点之间达成共识。
... import requests class Blockchain: ... def valid_chain(self, chain): last_block = chain[0] current_index = 1 while current_index < len(chain): block = chain[current_index] print(f'{last_block}') print(f'{block}') print("\n-----------\n") # Check that the hash of the block is correct if block['previous_hash'] != self.hash(last_block): return False # Check that the Proof of Work is correct if not self.valid_proof(last_block['proof'], block['proof']): return False last_block = block current_index += 1 return True def resolve_conflicts(self): """ This is our Consensus Algorithm, it resolves conflicts by replacing our chain with the longest one in the network. :return:True if our chain was replaced, False if not """ neighbours = self.nodes new_chain = None # We're only looking for chains longer than ours max_length = len(self.chain) # Grab and verify the chains from all the nodes in our network for node in neighbours: response = requests.get(f'http://{node}/chain') if response.status_code == 200: length = response.json()['length'] chain = response.json()['chain'] # Check if the length is longer and the chain is valid if length > max_length and self.valid_chain(chain): max_length = length new_chain = chain # Replace our chain if we discovered a new, valid chain longer than ours if new_chain: self.chain = new_chain return True return False
第一个方法 valid_chain() 负责通过遍历每个块并验证哈希和证明来检查链是否有效。resolve_conflicts() 是一种循环遍历我们所有相邻节点、下载它们的链并使用上述方法验证它们的方法。如果找到一个有效的链,其长度大于我们的,我们将替换我们的。
让我们将两个端点注册到我们的 API,一个用于添加相邻节点,另一个用于解决冲突:
@app.route('/nodes/register', methods=['POST']) def register_nodes(): values = request.get_json() nodes = values.get('nodes') if nodes is None: return "Error: Please supply a valid list of nodes", 400 for node in nodes: blockchain.register_node(node) response = { 'message': 'New nodes have been added', 'total_nodes': list(blockchain.nodes), } return jsonify(response), 201 @app.route('/nodes/resolve', methods=['GET']) def consensus(): replaced = blockchain.resolve_conflicts() if replaced: response = { 'message': 'Our chain was replaced', 'new_chain': blockchain.chain } else: response = { 'message': 'Our chain is authoritative', 'chain': blockchain.chain } return jsonify(response), 200
在这一点上,如果你愿意,你可以拿一台不同的机器,并在你的网络上启动不同的节点。或者在同一台机器上使用不同的端口启动进程。比如创建两个端口5000和6000来进行尝试。
关于“Python怎么构建区块链”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Python怎么构建区块链”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注创新互联行业资讯频道。
标题名称:Python怎么构建区块链
URL标题:http://pwwzsj.com/article/gejijj.html