面向云原生的混沌工程工具-ChaosBlade

面向云原生的混沌工程工具-ChaosBlade

创新互联公司从2013年开始,是专业互联网技术服务公司,拥有项目成都做网站、网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元献县做网站,已为上家服务,为献县各地企业和个人服务,联系电话:028-86922220

作者 | 肖长军(穹谷)阿里云智能事业群技术专家  

导读:随着云原生系统的演进,如何保障系统的稳定性受到很大的挑战,混沌工程通过反脆弱思想,对系统注入故障,提前发现系统问题,提升系统的容错能力。ChaosBlade 工具可以通过声明式配置执行混沌实验,简单高效。本文将会重点介绍 ChaosBlade 以及云原生相关的实验场景实践。

ChaosBlade 介绍

ChaosBlade 是阿里巴巴开源的一款遵循混沌实验模型的混沌实验执行工具,具有场景丰富度高、简单易用等特点,而且可以很方便的扩展实验场景,开源后不久就被加入到 CNCF Landspace 中,成为主流的一款混沌工具。

实验场景

目前支持的实验场景如下:

  • 基础资源场景:CPU 负载、内存占用、磁盘 IO 负载、磁盘占用、网络延迟、网络丢包、网络屏蔽、域名不可访问、shell 脚本篡改、杀进程、进程 Hang、机器重启等;

  • 应用服务场景:支持 Java 应用和 C++ 应用内的实验场景。Java 的场景组件丰富,例如支持 Dubbo、RocketMQ、HttpClient、Servlet、Druid等,而且支持编写 Java 或 Groovy 脚本实现复杂的实验场景;

  • 容器服务场景:支持 Kubernetes 和 Docker 服务,包含 node、pod 和 container 三种资源的实验场景,例如 Pod 网络延迟、丢包等。

混沌实验模型

面向云原生的混沌工程工具-ChaosBlade

以上所有的实验场景都遵循混沌实验模型,此模型共分为四层,包含:

  • Target:实验靶点。指实验发生的组件,如容器、应用框架(Dubbo、redis)等;
  • Scope:实验实施的范围。指具体触发实验的机器或者集群等;
  • Matcher:实验规则匹配器。根据所配置的 Target,定义相关的实验匹配规则,可以配置多个。由于每个 Target 可能有各自特殊的匹配条件,比如 RPC 领域的 Dubbo,可以根据服务提供者提供的服务和服务消费者调用的服务进行匹配,缓存领域的 Redis,可以根据 set、get 操作进行匹配;
  • Action:指实验模拟的具体场景,Target 不同,实施的场景也不一样,比如磁盘,可以演练磁盘满,磁盘 IO 读写高等。如果是应用,可以抽象出延迟、异常、返回指定值(错误码、大对象等)、参数篡改、重复调用等实验场景。

比如一台 IP 是 10.0.0.1 机器上的应用,调用 com.example.HelloService[@1.0.0 ]() Dubbo 服务延迟 3s,基于此模型可以描述为对 Dubbo 组件(Target)进行实验,实验实施的范围是 10.0.0.1 主机(Scope),调用 com.example.HelloService[@1.0.0 ]() (Matcher)服务延迟 3s(Action),对应的 chaosblade 命令为:

blade create dubbo delay --time 3000 --service com.example.HelloService --version 1.0.0

所以此模型很简单清晰的表达出实验场景,易于理解。下文中的云原生实验场景也基于此模型定义。

面向云原生的实验场景

实现方案

面向云原生的混沌工程工具-ChaosBlade

将混沌实验场景按照上述的实验模型,定义为 Kubernetes 中的资源,并通过自定义控制器来管理,可以通过 Yaml 配置或者直接执行 blade 命令执行。

ChaosBlade Operator 定义了资源控制器,并且会以 daemonset 的方式,在每个节点上部署一个 chaosblade-tool pod 来执行混沌实验。不同的实验场景内部实现方式不同,比如 Node 实验场景,其上面部署的 chaosblade-tool 内部执行即可,而 Container 内的实验场景,控制器会将 chaosblade 包拷贝到目标 Container 中执行。

使用方式

安装必要组件

安装 ChaosBlade Operator,可通过地址下载 chaosblade-operator-0.0.1.tgz,使用以下命令安装:

helm install --namespace kube-system --name chaosblade-operator chaosblade-operator-0.0.1.tgz

安装在 kube-system 命令空间下。ChaosBlade Operator 启动后会在每个节点部署 chaosblade-tool Pod 和一个 chaosblade-operator Pod。可通过以下命令查看安装结果:

kubectl get pod -n kube-system -o wide | grep chaosblade

面向云原生的混沌工程工具-ChaosBlade

执行实验

执行方式有两种:

  • 一种是通过配置 yaml 方式,使用 kubectl 执行;
  • 另一种是直接使用 chaosblade 包中的 blade 命令执行。

下面以指定一台节点,做 CPU 负载 80% 实验举例。

yaml 配置方式

apiVersion: chaosblade.io/v1alpha1
kind: ChaosBlade
metadata:
  name: cpu-load
spec:
  experiments:
  - scope: node
    target: cpu
    action: fullload
    desc: "increase node cpu load by names"
    matchers:
    - name: names
      value:
      - "cn-hangzhou.192.168.0.205"
    - name: cpu-percent
      value:
      - "80"

如上所示,配置好文件后,保存为 chaosblade_cpu_load.yaml,使用以下命令执行实验场景:

kubectl apply -f chaosblade_cpu_load.yaml

可通过以下命令查看每个实验的执行状态:

kubectl get blade cpu-load -o json

查看更多实验场景配置事例。

blade 命令执行方式

下载 chaosblade 工具包,解压即可使用。还是上述例子,使用 blade 命令执行如下:

blade create k8s node-cpu fullload --names cn-hangzhou.192.168.0.205 --cpu-percent 80 --kubeconfig ~/.kube/config

使用 blade 命令执行,会返回实验的执行结果。

修改实验

yaml 配置文件的方式支持场景动态修改,比如将上述的 cpu 负载调整为 60%,则只需将上述 value 的值从 80 改为 60 即可,例如:

apiVersion: chaosblade.io/v1alpha1
kind: ChaosBlade
metadata:
  name: cpu-load
spec:
  experiments:
  - scope: node
    target: cpu
    action: load
    desc: "cpu load"
    flags:
    - name: cpu-percent
      value: "60"
    - name: ip
      value: 192.168.0.34

然后使用 kubeclt apply -f chaosblade_cpu_load.yaml 命令执行更新即可。

停止实验

可以通过以下三种方式停止实验:

根据实验资源名停止

比如上述 cpu-load 场景,可以执行以下命令停止实验:

kubectl delete chaosblade cpu-load

通过 yaml 配置文件停止

指定上述创建好的 yaml 文件进行删除,命令如下:

kubectl delete -f chaosblade_cpu_load.yaml

通过 blade 命令停止

此方式仅限使用 blade 创建的实验,使用以下命令停止:

blade destroy 

是执行 blade create 命令返回的结果,如果忘记,可使用 blade status --type create 命令查询。

卸载 chaosblade operator

执行 helm del --purge chaosblade-operator 卸载即可,将会停止全部实验,删除所有创建的资源。

总结

ChaosBlade 基于混沌实验模型,友好地将 Kubernetes 资源控制结合,部署简单而且使用简洁,实验可控。除此之外 ChaosBlade 基于实验模型实现了很多领域场景执行器,可以很方便的扩展实验场景,可详见附录中的项目列表。

社区共建

ChaosBlade 自开源以来,共有近 30 多位贡献者加入和很多企业×××常感谢各位。同时非常欢迎更多的人参与进来,使 ChaosBlade 变的更加强大,覆盖更多的场景,成为各个企业稳定的、通用的混沌工程工具。

贡献的形式可以是提 bug、提交代码、编写文档、补充单元测试、参与问题讨论等等。ChaosBlade 相信:开源世界中,任何帮助都是贡献。

附录

项目列表如下:

  • ChaosBlade CLI(调用入口)
  • ChaosBlade 实验模型定义
  • 基础资源场景执行器
  • Docker 场景执行器
  • Kubernetes 场景执行器
  • Java 应用场景执行器
  • C++ 应用场景执行器

“ 阿里巴巴云×××icloudnative×××erverless、容器、Service Mesh等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发×××


当前标题:面向云原生的混沌工程工具-ChaosBlade
网站URL:http://pwwzsj.com/article/gihpsj.html