好程序员大数据分享Spark任务和集群启动流程
好程序员大数据分享Spark任务和集群启动流程,Spark集群启动流程
从网站建设到定制行业解决方案,为提供成都网站设计、网站制作服务体系,各种行业企业客户提供网站建设解决方案,助力业务快速发展。创新互联建站将不断加快创新步伐,提供优质的建站服务。
1.调用start-all.sh脚本,开始启动Master
2.Master启动以后,preStart方法调用了一个定时器,定时检查超时的Worker后删除
3.启动脚本会解析slaves配置文件,找到启动Worker的相应节点.开始启动Worker
4.Worker服务启动后开始调用preStart方法开始向所有的Master进行注册
5.Master接收到Worker发送过来的注册信息,Master开始保存注册信息并把自己的URL响应给Worker
6.Worker接收到Master的URL后并更新,开始调用一个定时器,定时的向Master发送心跳信息
任务提交流程
1.Driver端会通过spark-submit脚本启动SaparkSubmit进程,此时创建了一个非常重要的对象(SparkContext),开始向Master发送消息
2.Master接收到发送过来的信息后开始生成任务信息,并把任务信息放到一个对列里
3.Master把所有有效的Worker过滤出来,按照空闲的资源进行排序
4.Master开始向有效的Worker通知拿取任务信息并启动相应的Executor
5.Worker启动Executor并向Driver反向注册
6.Driver开始把生成的task发送给相应的Executor,Executor开始执行任务
集群启动流程
1.首先创建Master类
import akka.actor.{Actor, ActorSystem, Props} import com.typesafe.config.{Config, ConfigFactory}
import scala.collection.mutable import scala.concurrent.duration._
class Master(val masterHost: String, val masterPort: Int) extends Actor{
// 用来存储Worker的注册信息 val idToWorker = new mutable.HashMap[String, WorkerInfo]()
// 用来存储Worker的信息 val workers = new mutable.HashSet[WorkerInfo]()
// Worker的超时时间间隔 val checkInterval: Long = 15000
// 生命周期方法,在构造器之后,receive方法之前只调用一次 override def preStart(): Unit = { // 启动一个定时器,用来定时检查超时的Worker import context.dispatcher context.system.scheduler.schedule(0 millis, checkInterval millis, self, CheckTimeOutWorker) }
// 在preStart方法之后,不断的重复调用 override def receive: Receive = { // Worker -> Master case RegisterWorker(id, host, port, memory, cores) => { if (!idToWorker.contains(id)){ val workerInfo = new WorkerInfo(id, host, port, memory, cores) idToWorker += (id -> workerInfo) workers += workerInfo
println("a worker registered")
sender ! RegisteredWorker(s"akka.tcp://${Master.MASTER_SYSTEM}" + s"@${masterHost}:${masterPort}/user/${Master.MASTER_ACTOR}") } } case HeartBeat(workerId) => { // 通过传过来的workerId获取对应的WorkerInfo val workerInfo: WorkerInfo = idToWorker(workerId) // 获取当前时间 val currentTime = System.currentTimeMillis() // 更新最后一次心跳时间 workerInfo.lastHeartbeatTime = currentTime } case CheckTimeOutWorker => { val currentTime = System.currentTimeMillis() val toRemove: mutable.HashSet[WorkerInfo] = workers.filter(w => currentTime - w.lastHeartbeatTime > checkInterval)
// 将超时的Worker从idToWorker和workers中移除 toRemove.foreach(deadWorker => { idToWorker -= deadWorker.id workers -= deadWorker })
println(s"num of workers: ${workers.size}") } } } object Master{ val MASTER_SYSTEM = "MasterSystem" val MASTER_ACTOR = "Master"
def main(args: Array[String]): Unit = { val host = args(0) val port = args(1).toInt
val configStr = s""" |akka.actor.provider = "akka.remote.RemoteActorRefProvider" |akka.remote.netty.tcp.hostname = "$host" |akka.remote.netty.tcp.port = "$port" """.stripMargin
// 配置创建Actor需要的配置信息 val config: Config = ConfigFactory.parseString(configStr)
// 创建ActorSystem val actorSystem: ActorSystem = ActorSystem(MASTER_SYSTEM, config)
// 用actorSystem实例创建Actor actorSystem.actorOf(Props(new Master(host, port)), MASTER_ACTOR)
actorSystem.awaitTermination()
} } |
2.创建RemoteMsg特质
trait RemoteMsg extends Serializable{
}
// Master -> self(Master) case object CheckTimeOutWorker
// Worker -> Master case class RegisterWorker(id: String, host: String, port: Int, memory: Int, cores: Int) extends RemoteMsg
// Master -> Worker case class RegisteredWorker(masterUrl: String) extends RemoteMsg
// Worker -> self case object SendHeartBeat
// Worker -> Master(HeartBeat) case class HeartBeat(workerId: String) extends RemoteMsg |
3.创建Worker类
import java.util.UUID
import akka.actor.{Actor, ActorRef, ActorSelection, ActorSystem, Props} import com.typesafe.config.{Config, ConfigFactory}
import scala.concurrent.duration._
class Worker(val host: String, val port: Int, val masterHost: String, val masterPort: Int, val memory: Int, val cores: Int) extends Actor{
// 生成一个Worker ID val workerId = UUID.randomUUID().toString
// 用来存储MasterURL var masterUrl: String = _
// 心跳时间间隔 val heartBeat_interval: Long = 10000
// master的Actor var master: ActorSelection = _
override def preStart(){ // 获取Master的Actor master = context.actorSelection(s"akka.tcp://${Master.MASTER_SYSTEM}" + s"@${masterHost}:${masterPort}/user/${Master.MASTER_ACTOR}")
master ! RegisterWorker(workerId, host, port, memory, cores) }
override def receive: Receive = { // Worker接收到Master发送过来的注册成功的信息(masterUrl) case RegisteredWorker(masterUrl) => { this.masterUrl = masterUrl // 启动一个定时器,定时给Master发送心跳 import context.dispatcher context.system.scheduler.schedule(0 millis, heartBeat_interval millis, self, SendHeartBeat) } case SendHeartBeat => { // 向Master发送心跳 master ! HeartBeat(workerId) }
}
} object Worker{ val WORKER_SYSTEM = "WorkerSystem" val WORKER_ACTOR = "Worker"
def main(args: Array[String]): Unit = { val host = args(0) val port = args(1).toInt val masterHost = args(2) val masterPort = args(3).toInt val memory = args(4).toInt val cores = args(5).toInt
val configStr = s""" |akka.actor.provider = "akka.remote.RemoteActorRefProvider" |akka.remote.netty.tcp.hostname = "$host" |akka.remote.netty.tcp.port = "$port" """.stripMargin
// 配置创建Actor需要的配置信息 val config: Config = ConfigFactory.parseString(configStr)
// 创建ActorSystem val actorSystem: ActorSystem = ActorSystem(WORKER_SYSTEM, config)
// 用actorSystem实例创建Actor val worker: ActorRef = actorSystem.actorOf( Props(new Worker(host, port, masterHost, masterPort, memory, cores)), WORKER_ACTOR)
actorSystem.awaitTermination()
} } |
4.创建初始化类
class WorkerInfo(val id: String, val host: String, val port: Int, val memory: Int, val cores: Int) {
// 初始化最后一次心跳的时间 var lastHeartbeatTime: Long = _
} |
5.本地测试需要传入参数:
本文题目:好程序员大数据分享Spark任务和集群启动流程
网站URL:http://pwwzsj.com/article/gjcecg.html