Kubernetes的PDB怎么应用
这篇文章主要介绍“Kubernetes的PDB怎么应用”,在日常操作中,相信很多人在Kubernetes的PDB怎么应用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Kubernetes的PDB怎么应用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
我们提供的服务有:成都网站设计、做网站、微信公众号开发、网站优化、网站认证、察布查尔锡伯ssl等。为成百上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的察布查尔锡伯网站制作公司
PDB的应用场景
大概在Kubernetes 1.4新增了PodDisruptionBudget Object(后面简称PDB),在1.5的时候升级到Beta,但是直到1.9 Released还是Beta。不过没关系,我们抛开这些,先来想想PDB是为了解决什么问题的。PDB Feature已经一年多了,以前没有研究过它,主要是没场景。最近在做基于Kubernetes的ElasticSearch as a Service(简称ESaaS)项目方案,要尽量保证任何ElasticSearch Cluster中始终至少要有一个健康可用的ES client pod, ES master pod和ES data pod。很多同学都学想到Deployment中可以设置maxUnavailable,那不就行了吗?再说了,还会有RS Controller在做副本控制呢?
等下!Deployment中的maxUnavailable是什么时候用的?—— 是用来对使用Deployment部署的应用进行滚动更新时保障最少可服务副本数的!RS Controller呢?—— 那只是副本控制器之一,它并不能给你保证集群中始终有几个副本的,它是负责尽快的让实际副本数跟你的期望副本数相同的,它才不管中间某些时刻的实际副本数呢。这个时候,你就可以考虑使用Kubernetes PDB了,它是用来保证应用的高可用的,对那些Voluntary(自愿的)Disruption做好Budgets(预算方案)。
前面提到了Voluntary Disruption,我们来捋一下,什么是Voluntary Disruption?什么又是Involuntary Disruption?
Involuntary Disruption及其应对措施
Involuntary Disruption指的是那些不可控的(或者目前来说难于控制的)外界因素导致的Disruption,比如:
服务器的硬件故障或者内核崩溃导致节点Down了。
如果容器部署在VM,VM被误删了或者Hyperwisor出问题了。
集群出现了网络脑裂。(Kubernetes通过NodeController来处理网络脑裂情况,但是evict pods时仍然没有考虑到保证应用的高可用)关于NodeController深度解析,请参考我的下面博文:
Kubernetes Node Controller源码分析之执行篇
Kubernetes Node Controller源码分析之创建篇
Kubernetes Node Controller源码分析之配置篇
Kubernetes Node Controller源码分析之Taint Controller
某个节点因为不合理的超配导致出现计算资源不足时,触发kubelet eviction时也没有考虑到保证应用的高可用。关于kubelet eviction深度解析,请参考我的下面博文:
Kubernetes Eviction Manager源码分析
Kubernetes Eviction Manager工作机制分析
PDB不是解决Involuntary Disruption的,我们如何在使用Kubernetes时尽量减轻或者缓解Involuntary Disruption对应用高可用的影响呢?
一个应用尽量使用Deployment,RS,StatefulSet等副本控制器部署,并且replicas大于1。
设置应用container的request值,使得即使在资源非常紧张的情况下,也能有足够的资源供它使用。
另外,尽量考虑物理设备上的HA,比如一个应用的不同副本要跨服务器部署,跨机柜跨机架部署,跨交换机部署等。
PDB是为了Voluntary Disruption时保障应用的高可用
Involuntary Disruption对立的场景,自然就是Voluntary Disruption了,指的是用户或者集群管理员触发的,Kubernetes可控的Disruption场景,比如:
删除那些管理Pods的控制器,比如Deployment,RS,RC,StatefulSet。
触发应用的滚动更新。
直接批量删除Pods。
kubectl drain一个节点(节点下线、集群缩容)
PDB就是针对Voluntary Disruption场景设计的,属于Kubernetes可控的范畴之一,而不是为Involuntary Disruption设计的。
Kube-Node项目上线后,可以支持对接Openstack,AWS,GCE等cloud provider实现Node的自动管理,因此可能会经常有HNA(Horizontal Node Autoscaleer)事件,工作流就有类似drain a node
的逻辑,因此需要使用PDB来保障应用的HA。
PDB的使用方法及注意事项
使用说明及注意点
部署在Kubernetes的每个App都可以创建一个对应PDB Object,用来限制Voluntary Disruptions时最大可以down的副本数或者最少应该保持Available的副本数,以此来保证应用的高可用。
PDB可以用来保护由Kubernetes内置控制器管理的应用,这种情况下要求DPB selector等同于这些Controller Object的Selector:
Deployment
ReplicationController
ReplicaSet
StatefulSet
也可以用来保护那些仅仅由PDB Selector自己选择的Pods Set,但是有两个使用限制:
只能配置
.spec.minAvailable
,不能使用maxUnavailable
;.spec.minAvailable
只能为整型值,不能是百分比。
因此,不管怎么说,PDB影响的Pods Set都是通过自己的Selector来选择的,使用时要注意同一个namespace下不同的PDB Object不要使用有重叠的Selectors。
在使用PDB时,你需要弄清楚你的应用类型以及你想要的应对措施:
无状态应用:比如想至少有60%的副本Available。
解决办法:创建PDB Object,指定minAvailable为60%,或者maxUnavailable为40%。
单实例的有状态应用:终止这个实例之前必须提前通知客户并取得同意。
解决办法:创建PDB Object,并设置maxUnavailable为0,这样Kubernetes就会阻止这个实例的删除,然后去通知并征求用户同意后,再把这个PDB删除从而解除这个阻止,然后再去recreate。单实例的statefulset的滚动更新一定会有服务停止时间,因此建议生产环境不要创建单实例的StatefulSet。
多实例的有状态应用:最少可用的实例数不能少于某个数
N
(比如受限于raft协议类应用的选举机制)解决办法:设置maxUnavailable=1或者minAvailable=N,分别允许每次只删除一个实例和每次删除
expected_replicas - minAvailable
个实例。批处理Job:Job需要最终有一个Pod成功完成任务。
Job Controller有自己的机制保证这个,不需要创建PDB。
关于Job Controller深入解读,请参考我的博文:Kubernetes Job Controller源码分析
定义PDB Object
进行了以上思考后,确定了要创建PDB,接下来就看看PodDisruptionBudget
怎么定义的,下面是个Sample:
apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: name: zk-pdb spec: minAvailable: 2 selector: matchLabels: app: zookeeper
PDB的定义,其实就三项关键内容:
.spec.selector
用来选择后端Pods Set,最佳实践是与应用对应的Deployment,StatefulSet的Selector一致;.spec.minAvailable
表示发生voluntary disruptions的过程中,要保证至少可用的Pods数或者比例;.spec.maxUnavailable
表示发生voluntary disruptions的过程中,要保证最大不可用的Pods数或者比例,要求Kubernetes version >= 1.7
;这个配置只能用来对应Deployment,RS,RC,StatefulSet的Pods,推荐优先使用.spec.maxUnavailable
。
注意:
同一个PDB Object中不能同时定义
.spec.minAvailable
和.spec.maxUnavailable
。前面提到,应用滚动更新时Pod的delete和unavailable虽然也属于voluntary disruption,但是实际上滚动更新有自己的策略控制(marSurge和maxUnavailable),因此PDB不会干预这个过程。
PDB只能保证voluntary disruptions时的副本数,比如evict pod过程中刚好满足
.spec.minAvailable
或.spec.maxUnavailable
,这时某个本来正常的Pod突然因为Node Down(Involuntary Disruption)了挂了,那么这个时候实际Pods数就比PDB中要求的少了,因此PDB不是万能的!
使用上,如果设置.spec.minAvailable
为100%或者.spec.maxUnavailable
为0%,意味着会完全阻止evict pods的过程(Deployment和StatefulSet的滚动更新除外)。
创建PDB Object
kubectl apply -f zk-pdb.yaml
创建该PDB Object;
$ kubectl get poddisruptionbudgets NAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGE zk-pdb 2 1 7s
kubect get pdb zk-pdb -o yaml
查看:
$ kubectl get poddisruptionbudgets zk-pdb -o yaml apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: creationTimestamp: 2017-08-28T02:38:26Z generation: 1 name: zk-pdb ... status: currentHealthy: 3 desiredHealthy: 3 disruptedPods: null disruptionsAllowed: 1 expectedPods: 3 observedGeneration: 1
PDB的工作原理及源码分析
PDB Object定义是遇到voluntary disruption时用户的期望状态,真正去维护这个期望状态的也是一个由kube-controller-manager管理的Controller,那便是Disruption Controller。
Disruption Controller主要watch Pods和PDBs,当监听到pod/pdb的Add/Del/Update事件后,并会将对应的pdb object放到rate limit queue中等待worker处理,worker的主要逻辑就是计算PodDisruptionBudgetStatus
的currentHealthy, desiredHealthy, expectedCount, disruptedPods,然后调用api更新PDB Status。
pkg/controller/disruption/disruption.go:498 func (dc *DisruptionController) trySync(pdb *policy.PodDisruptionBudget) error { pods, err := dc.getPodsForPdb(pdb) if err != nil { dc.recorder.Eventf(pdb, v1.EventTypeWarning, "NoPods", "Failed to get pods: %v", err) return err } if len(pods) == 0 { dc.recorder.Eventf(pdb, v1.EventTypeNormal, "NoPods", "No matching pods found") } expectedCount, desiredHealthy, err := dc.getExpectedPodCount(pdb, pods) if err != nil { dc.recorder.Eventf(pdb, v1.EventTypeWarning, "CalculateExpectedPodCountFailed", "Failed to calculate the number of expected pods: %v", err) return err } currentTime := time.Now() disruptedPods, recheckTime := dc.buildDisruptedPodMap(pods, pdb, currentTime) currentHealthy := countHealthyPods(pods, disruptedPods, currentTime) err = dc.updatePdbStatus(pdb, currentHealthy, desiredHealthy, expectedCount, disruptedPods) if err == nil && recheckTime != nil { // There is always at most one PDB waiting with a particular name in the queue, // and each PDB in the queue is associated with the lowest timestamp // that was supplied when a PDB with that name was added. dc.enqueuePdbForRecheck(pdb, recheckTime.Sub(currentTime)) } return err }
下面是PodDisruptionBudgetStatus
的定义:
pkg/apis/policy/types.go:48 type PodDisruptionBudgetStatus struct { // Most recent generation observed when updating this PDB status. PodDisruptionsAllowed and other // status informatio is valid only if observedGeneration equals to PDB's object generation. // +optional ObservedGeneration int64 `json:"observedGeneration,omitempty" protobuf:"varint,1,opt,name=observedGeneration"` // DisruptedPods contains information about pods whose eviction was // processed by the API server eviction subresource handler but has not // yet been observed by the PodDisruptionBudget controller. // A pod will be in this map from the time when the API server processed the // eviction request to the time when the pod is seen by PDB controller // as having been marked for deletion (or after a timeout). The key in the map is the name of the pod // and the value is the time when the API server processed the eviction request. If // the deletion didn't occur and a pod is still there it will be removed from // the list automatically by PodDisruptionBudget controller after some time. // If everything goes smooth this map should be empty for the most of the time. // Large number of entries in the map may indicate problems with pod deletions. DisruptedPods map[string]metav1.Time `json:"disruptedPods" protobuf:"bytes,2,rep,name=disruptedPods"` // Number of pod disruptions that are currently allowed. PodDisruptionsAllowed int32 `json:"disruptionsAllowed" protobuf:"varint,3,opt,name=disruptionsAllowed"` // current number of healthy pods CurrentHealthy int32 `json:"currentHealthy" protobuf:"varint,4,opt,name=currentHealthy"` // minimum desired number of healthy pods DesiredHealthy int32 `json:"desiredHealthy" protobuf:"varint,5,opt,name=desiredHealthy"` // total number of pods counted by this disruption budget ExpectedPods int32 `json:"expectedPods" protobuf:"varint,6,opt,name=expectedPods"` }
PodDisruptionBudgetStatus最重要的元素就是**DisruptedPods
和PodDisruptionsAllowed
**:
DisruptedPods:用来保存那些已经通过apiserver pod eviction subresource处理的pods,但是还没被PDB Controller发现处理的Pods,是Map类型,key为Pod Name,value是apiserver接受eviction subresource请求的时间。加入里面的Pod有2min的超时时间,如果2min后Pod仍然没有被删除,则会将该Pod从队列中剔除。
PodDisruptionsAllowed:表示当前允许Disruption的Pods数。
Disruption Controller的主要逻辑就是更新PDB.Status,那么问题来了,到底是谁去控制voluntary distribution时eviction的maxUnavailable或者minAvailable的呢?
要再次提醒的是,PDB Controller只处理那些通过pod eviction subresource请求对应的pods,因此上面的这个问题就要到对应的Pod的evictionRest中去找了。
pkg/registry/core/pod/storage/eviction.go:81 // Create attempts to create a new eviction. That is, it tries to evict a pod. func (r *EvictionREST) Create(ctx genericapirequest.Context, obj runtime.Object, createValidation rest.ValidateObjectFunc, includeUninitialized bool) (runtime.Object, error) { eviction := obj.(*policy.Eviction) obj, err := r.store.Get(ctx, eviction.Name, &metav1.GetOptions{}) if err != nil { return nil, err } pod := obj.(*api.Pod) var rtStatus *metav1.Status var pdbName string err = retry.RetryOnConflict(EvictionsRetry, func() error { pdbs, err := r.getPodDisruptionBudgets(ctx, pod) if err != nil { return err } if len(pdbs) > 1 { rtStatus = &metav1.Status{ Status: metav1.StatusFailure, Message: "This pod has more than one PodDisruptionBudget, which the eviction subresource does not support.", Code: 500, } return nil } else if len(pdbs) == 1 { pdb := pdbs[0] pdbName = pdb.Name // Try to verify-and-decrement // If it was false already, or if it becomes false during the course of our retries, // raise an error marked as a 429. if err := r.checkAndDecrement(pod.Namespace, pod.Name, pdb); err != nil { return err } } return nil }) if err == wait.ErrWaitTimeout { err = errors.NewTimeoutError(fmt.Sprintf("couldn't update PodDisruptionBudget %q due to conflicts", pdbName), 10) } if err != nil { return nil, err } if rtStatus != nil { return rtStatus, nil } // At this point there was either no PDB or we succeded in decrementing // Try the delete _, _, err = r.store.Delete(ctx, eviction.Name, eviction.DeleteOptions) if err != nil { return nil, err } // Success! return &metav1.Status{Status: metav1.StatusSuccess}, nil }
通过EvictionREST去请求evict pod的时候,会检查pod只有一个对应的pdb,否则报错。关于Eviction API的使用,请参考The Eviction API,下面只给出简单的Sample:
{ "apiVersion": "policy/v1beta1", "kind": "Eviction", "metadata": { "name": "quux", "namespace": "default" } } $ curl -v -H 'Content-type: application/json' http://127.0.0.1:8080/api/v1/namespaces/default/pods/quux/eviction -d @eviction.json
然后通过checkAndDecrement去检查是否满足PDB的manUnavailable或者minAvailable,如果满足的话对
pdb.Status.PodDisruptionsAllowed
减1处理。checkAndDecrement成功的话,就真正去delete对应的Pod。
// checkAndDecrement checks if the provided PodDisruptionBudget allows any disruption. func (r *EvictionREST) checkAndDecrement(namespace string, podName string, pdb policy.PodDisruptionBudget) error { if pdb.Status.ObservedGeneration < pdb.Generation { // TODO(mml): Add a Retry-After header. Once there are time-based // budgets, we can sometimes compute a sensible suggested value. But // even without that, we can give a suggestion (10 minutes?) that // prevents well-behaved clients from hammering us. err := errors.NewTooManyRequests("Cannot evict pod as it would violate the pod's disruption budget.", 0) err.ErrStatus.Details.Causes = append(err.ErrStatus.Details.Causes, metav1.StatusCause{Type: "DisruptionBudget", Message: fmt.Sprintf("The disruption budget %s is still being processed by the server.", pdb.Name)}) return err } if pdb.Status.PodDisruptionsAllowed < 0 { return errors.NewForbidden(policy.Resource("poddisruptionbudget"), pdb.Name, fmt.Errorf("pdb disruptions allowed is negative")) } if len(pdb.Status.DisruptedPods) > MaxDisruptedPodSize { return errors.NewForbidden(policy.Resource("poddisruptionbudget"), pdb.Name, fmt.Errorf("DisruptedPods map too big - too many evictions not confirmed by PDB controller")) } if pdb.Status.PodDisruptionsAllowed == 0 { err := errors.NewTooManyRequests("Cannot evict pod as it would violate the pod's disruption budget.", 0) err.ErrStatus.Details.Causes = append(err.ErrStatus.Details.Causes, metav1.StatusCause{Type: "DisruptionBudget", Message: fmt.Sprintf("The disruption budget %s needs %d healthy pods and has %d currently", pdb.Name, pdb.Status.DesiredHealthy, pdb.Status.CurrentHealthy)}) return err } pdb.Status.PodDisruptionsAllowed-- if pdb.Status.DisruptedPods == nil { pdb.Status.DisruptedPods = make(map[string]metav1.Time) } // Eviction handler needs to inform the PDB controller that it is about to delete a pod // so it should not consider it as available in calculations when updating PodDisruptions allowed. // If the pod is not deleted within a reasonable time limit PDB controller will assume that it won't // be deleted at all and remove it from DisruptedPod map. pdb.Status.DisruptedPods[podName] = metav1.Time{Time: time.Now()} if _, err := r.podDisruptionBudgetClient.PodDisruptionBudgets(namespace).UpdateStatus(&pdb); err != nil { return err } return nil }
checkAndDecrement主要检查
pdb.Status.PodDisruptionsAllowed
是否大于0,并且DisruptedPods包含的Pods数不能超过2000(Disruption Controller性能可能不足以支撑这么多)。检查通过,就对
pdb.Status.PodDisruptionsAllowed
减1,然后将该Pod加到DisruptedPods这个Map中,map的value就是当前时间(apiserver接受该eviction request的时间)。更新PDB,PDB Controller因为监听了PDB的Update Event,接着就会触发PDB Controller的逻辑,再次去维护PDB Status。
Note:PDB在scheduler中也有用到。基于Pod Priority进行抢占式调度时,generic_scheduler进行preempte pod时会对Node上所有Pod进行PDB验证,统计违背PDB的Pods数量,Select Node时尽量选择违背PDB Pods数更少的node。
到此,关于“Kubernetes的PDB怎么应用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
网页标题:Kubernetes的PDB怎么应用
新闻来源:http://pwwzsj.com/article/gjcsoj.html