大数据nosql成为趋势,nosql数据库兴起的原因
NoSQL是大数据的未来吗
我们知道大数据产生了巨大的数据,那么是需要去存储这些数据的,NoSQL,泛指非关系型的数据库,它类似于存放数据的仓库,对数据进行存储,相比mysql,是它的升级版,NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
发展壮大离不开广大客户长期以来的信赖与支持,我们将始终秉承“诚信为本、服务至上”的服务理念,坚持“二合一”的优良服务模式,真诚服务每家企业,认真做好每个细节,不断完善自我,成就企业,实现共赢。行业涉及自拌料搅拌车等,在网站建设公司、成都全网营销推广、WAP手机网站、VI设计、软件开发等项目上具有丰富的设计经验。
为什么海量数据场景中NoSQL越来越重要
本质是因为:随着互联网的进一步发展与各行业信息化建设进程加快、参与者的增多,人们对软件有了更多更新的要求,需要软件不仅能实现功能,而且要求保证许多人可以共同参与使用,因而软件所需承载的数据量和吞吐量必须达到相应的需求。而目前的关系型数据库在某些方面有一些缺点,导致不能满足需要。
具体则需要对比关系型数据库与Nosql之间的区别可以得出
关系型数据库
关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。
关系型数据库的优势:
1. 保持数据的一致性(事务处理)
2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)
3. 可以进行Join等复杂查询
其中能够保持数据的一致性是关系型数据库的最大优势。
关系型数据库的不足:
不擅长的处理
1. 大量数据的写入处理(这点尤为重要)
2. 为有数据更新的表做索引或表结构(schema)变更
3. 字段不固定时应用
4. 对简单查询需要快速返回结果的处理
--大量数据的写入处理
读写集中在一个数据库上让数据库不堪重负,大部分网站已使用主从复制技术实现读写分离,以提高读写性能和读库的可扩展性。
所以在进行大量数据操作时,会使用数据库主从模式。数据的写入由主数据库负责,数据的读入由从数据库负责,可以比较简单地通过增加从数据库来实现规模化,但是数据的写入却完全没有简单的方法来解决规模化问题。
第一,要想将数据的写入规模化,可以考虑把主数据库从一台增加到两台,作为互相关联复制的二元主数据库使用,确实这样可以把每台主数据库的负荷减少一半,但是更新处理会发生冲突,可能会造成数据的不一致,为了避免这样的问题,需要把对每个表的请求分别分配给合适的主数据库来处理。
第二,可以考虑把数据库分割开来,分别放在不同的数据库服务器上,比如将不同的表放在不同的数据库服务器上,数据库分割可以减少每台数据库服务器上的数据量,以便减少硬盘IO的输入、输出处理,实现内存上的高速处理。但是由于分别存储字不同服务器上的表之间无法进行Join处理,数据库分割的时候就需要预先考虑这些问题,数据库分割之后,如果一定要进行Join处理,就必须要在程序中进行关联,这是非常困难的。
--为有数据更新的表做索引或表结构变更
在使用关系型数据库时,为了加快查询速度需要创建索引,为了增加必要的字段就一定要改变表结构,为了进行这些处理,需要对表进行共享锁定,这期间数据变更、更新、插入、删除等都是无法进行的。如果需要进行一些耗时操作,例如为数据量比较大的表创建索引或是变更其表结构,就需要特别注意,长时间内数据可能无法进行更新。
--字段不固定时的应用
如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
--对简单查询需要快速返回结果的处理 (这里的“简单”指的是没有复杂的查询条件)
这一点称不上是缺点,但不管怎样,关系型数据库并不擅长对简单的查询快速返回结果,因为关系型数据库是使用专门的sql语言进行数据读取的,它需要对sql与越南进行解析,同时还有对表的锁定和解锁等这样的额外开销,这里并不是说关系型数据库的速度太慢,而只是想告诉大家若希望对简单查询进行高速处理,则没有必要非使用关系型数据库不可。
NoSQL数据库
关系型数据库应用广泛,能进行事务处理和表连接等复杂查询。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。
优点:
易于数据的分散
各个数据之间存在关联是关系型数据库得名的主要原因,为了进行join处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散,这也是关系型数据库并不擅长大数据量的写入处理的原因。相反NoSQL数据库原本就不支持Join处理,各个数据都是独立设计的,很容易把数据分散在多个服务器上,故减少了每个服务器上的数据量,即使要处理大量数据的写入,也变得更加容易,数据的读入操作当然也同样容易。
典型的NoSQL数据库
临时性键值存储(memcached、Redis)、永久性键值存储(ROMA、Redis)、面向文档的数据库(MongoDB、CouchDB)、面向列的数据库(Cassandra、HBase)
一、 键值存储
它的数据是以键值的形式存储的,虽然它的速度非常快,但基本上只能通过键的完全一致查询获取数据,根据数据的保存方式可以分为临时性、永久性和两者兼具 三种。
(1)临时性
所谓临时性就是数据有可能丢失,memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止时,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据,旧数据会丢失。总结来说:
。在内存中保存数据
。可以进行非常快速的保存和读取处理
。数据有可能丢失
(2)永久性
所谓永久性就是数据不会丢失,这里的键值存储是把数据保存在硬盘上,与临时性比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的,但数据不会丢失是它最大的优势。总结来说:
。在硬盘上保存数据
。可以进行非常快速的保存和读取处理(但无法与memcached相比)
。数据不会丢失
(3) 两者兼备
Redis属于这种类型。Redis有些特殊,临时性和永久性兼具。Redis首先把数据保存在内存中,在满足特定条件(默认是 15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的键发生变更)的时候将数据写入到硬盘中,这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性,这种类型的数据库特别适合处理数组类型的数据。总结来说:
。同时在内存和硬盘上保存数据
。可以进行非常快速的保存和读取处理
。保存在硬盘上的数据不会消失(可以恢复)
。适合于处理数组类型的数据
二、面向文档的数据库
MongoDB、CouchDB属于这种类型,它们属于NoSQL数据库,但与键值存储相异。
(1)不定义表结构
即使不定义表结构,也可以像定义了表结构一样使用,还省去了变更表结构的麻烦。
(2)可以使用复杂的查询条件
跟键值存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据,虽然不具备事务处理和Join这些关系型数据库所具有的处理能力,但初次以外的其他处理基本上都能实现。
三、 面向列的数据库
Cassandra、HBae、HyperTable属于这种类型,由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引入注目。
普通的关系型数据库都是以行为单位来存储数据的,擅长以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被成为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
面向列的数据库具有搞扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,故应用起来十分困难。
总结:关系型数据库与NoSQL数据库并非对立而是互补的关系,即通常情况下使用关系型数据库,在适合使用NoSQL的时候使用NoSQL数据库,让NoSQL数据库对关系型数据库的不足进行弥补。
大数据分析领域有哪些发展趋势?
1.基于云的大数据分析
Hadoop是用于处理大型数据集的一个框架和一组工具,这个最初被设计工作在物理机的集群上,但是目前这种现象已经改变,越来越多的基于云中的数据处理器技术出现,例如亚马逊利用云的数据BI的托管长款,谷歌BigQuery中的数据分析服务,IBM的Bluemix云平等等,这些都是基于云的大数据分析平台。
2. Hadoop:新的企业数据操作系统
Hadoop,分布式的分析框架,如今正在演变成分布式资源管理器,它可能将是数据分析的一个通用的操作系统。有了这些系统,你可以将不同的数据操作和分析操作插入到Hadoop分布式存储系统中来执行。
3.更多的预测分析
随着大数据的发展,分析师不仅会嗯更多的数据一起工作,而且还将处理大量的许多属性的工具。但是随着大数据行业的发展,针对旧数据的分析更多的是为了提供预测的功能,毕竟人们更希望利用原有的数据来对未来产生有利的用途。
4. 更多更好的NoSQL
替代传统的基于SQL的关系数据库的产品被称为NoSQL数据库,如今被迅速的普及在特定种类的分析应用程序中。而且这一势头在持续增长,据估计,预计未来将有15至20个开源的NoSQL数据库共同存在,他们各自有的的专长,这些数据库会得到快速的发展。
5.在内存分析
使用内存数据库来加快分析处理的方式如今越来越受欢迎,很多用户都非常喜欢这种方式,目前很多基于内存的分析管理工具以及出现,其中以亚马逊的HANA一体机尤为明显。
除了分析软件看好这个市场,作为全球的企业级市场的处理器生产商,英特尔也非常看好这一领域的发展,从目前其产品推出的发展趋势来看,其内存支持将会越来越大,一些特定的产品甚至支持的比硬盘的容量还要大。
关于大数据分析领域有哪些发展趋势,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
大数据的发展趋势?
1.大数据和开源
Apache Hadoop、Spark和其他开源应用程序已经成为大数据技术空间的主流,而且这种趋势似乎可能会持续下去。一项调查发现,近60%的企业预计到今年年底将采用Hadoop集群投入生产。根据调研机构Forrester公司的报告,Hadoop的使用量每年增长32.9%。
专家表示,到2017年,许多企业将扩大对Hadoop和NoSQL技术的使用,并寻找加快大数据处理的途径。许多人寻求能够让他们实时访问和响应数据的技术。
Hadoop就是开源大数据项目的一个很好的例子。
2.内存技术
内存技术是企业正在研究加速大数据处理的技术之一。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而内存技术可以将数据存储在RAM中,并且存取速度要快很多倍。Forrester 公司的一份报告预测,内存数据结构市场规模每年将增长29.2%。
目前有几家不同的供应商提供内存数据库技术,特别是SAP、IBM、Pivotal公司。
3.机器学习
随着大数据分析能力的进步,一些企业已经开始投资机器学习(ML)。机器学习是人工智能的一个分支,其重点在于允许计算机在没有明确编程的情况下学习新事物。换句话说,它分析现有的大数据存储库来得出改变应用程序行为的结论。
根据Gartner公司的研究,机器学习是2017年十大战略技术趋势之一。报告指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,以创建理解、学习、预测,以及潜在地自主操作系统。
NoSQL 数据库:何时使用 NoSQL 与 SQL?
NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。
NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。
“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。
在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。
NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。
一些流行的 NoSQL 数据库包括:
随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。
传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。
有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。
但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。
一般来说,在以下情况下,NoSQL 比 SQL 更可取:
许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。
内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。
例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。
大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。
Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。
物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。
Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。
拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。
例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。
大数据技术的发展趋势有哪些
1.数据分析成为大数据技术的核心 数据分析在数据处理过程中占据十分重要的位置,随着时代的发展,数据分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。要想逐步实现这个功能,就必须对数据进行分析和挖掘。而数据的采集、存储、和管理都是数据分析步骤的基础,通过进行数据分析得到的结果,将应用于大数据相关的各个领域。未来大数据技术的进一步发展,与数据分析技是密切相关的
2.广泛采用实时性的数据处理方式 在现如今人们的生活中,人们获取信息的速度较快。为了更好地满足人们的需求,大数据处理系统的处理方式也需要不断地与时俱进。目前大数据的处理系统采用的主要是批量化的处理方式,这种数据处理方式有一定的局限性,主要是用于数据报告的频率不需要达到分钟级别的场合,而对于要求比较高的场合,这种数据处理方式就达不到要求。传统的数据仓库系统、链路挖掘等应用对数据处理的时间往往以小时或者天为单位。这与大数据自身的发展有点不相适应。大数据突出强调数据的实时性,因而对数据处理也要体现出实时性。如在线个性化推荐、股票交易处理、实时路况信息等数据处理时间要求在分钟甚至秒极。要求极高。在一些大数据的应用场合,人们需要及时对获取的信息进行处理并进行适当的舍弃,否则很容易造成空间的不足。在未来的发展过程中,实时性的数据处理方式将会成为主流,不断推动大数据技术的发展和进步。
3.基于云的数据分析平台将更加完善 近几年来,云计算技术发展的越来越快,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。此外,云计算具有十分丰富的IT资源、分布较为广泛,为大数据技术的发展提供了技术支持。随着云计算技术的不断发展和完善,发展平台的日趋成熟,大数据技术自身将会得到快速提升,数据处理水平也会得到显著提升。
4.开源软件的发展将会成为推动大数据技术发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。虽然现如今商业化的软件也是发展十分迅速,但是二者之间并不会产生矛盾,可以优势互补,从而共同进步。开源软件自身在发展的同时,为大数据技术的发展贡献力量。
本文名称:大数据nosql成为趋势,nosql数据库兴起的原因
网页网址:http://pwwzsj.com/article/hccijo.html