go语言中进行子查询,go语言索引

SQL查询语句中,什么叫子查询?

嵌套SELECT语句也叫子查询,一个 SELECT 语句的查询结果能够作为另一个语句的输入值。子查询不但能够出现在Where子句中,也能够出现在from子句中,作为一个临时表使用,也能够出现在select list中,作为一个字段值来返回。

井研ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!

1、单行子查询 :单行子查询是指子查询的返回结果只有一行数据。当主查询语句的条件语句中引用子查询结果时可用单行比较符号(=, , , =, =, )来进行比较。

例:

select ename,deptno,sal 

from emp 

where deptno=(select deptno from dept where loc='NEW YORK'); 

2、多行子查询:多行子查询即是子查询的返回结果是多行数据。当主查询语句的条件语句中引用子查询结果时必须用多行比较符号(IN,ALL,ANY)来进行比较。其中,IN的含义是匹配子查询结果中的任一个值即可("IN" 操作符,能够测试某个值是否在一个列表中),ALL则必须要符合子查询的所有值才可,ANY要符合子查询结果的任何一个值即可。而且须注意ALL 和ANY 操作符不能单独使用,而只能与单行比较符(=、、 、= 、= 、)结合使用。

例:

1).多行子查询使用IN操作符号例子:查询选修了老师名叫Rona(假设唯一)的学生名字

sql select stName

Golang 中更好的错误处理:理论和实践技巧

云和安全管理服务专家新钛云服 张春翻译

这种方法有几个缺点。首先,它可以对程序员隐藏错误处理路径,特别是在捕获异常不是强制性的情况下,例如在 Python 中。即使在具有必须处理的 Java 风格的检查异常的语言中,如果在与原始调用不同的级别上处理错误,也并不总是很明显错误是从哪里引发的。

我们都见过长长的代码块包装在一个 try-catch 块中。在这种情况下,catch 块实际上充当 goto 语句,这通常被认为是有害的(奇怪的是,C 中的关键字被认为可以接受的少数用例之一是错误后清理,因为该语言没有 Golang- 样式延迟语句)。

如果你确实从源头捕获异常,你会得到一个不太优雅的 Go 错误模式版本。这可能会解决混淆代码的问题,但会遇到另一个问题:性能。在诸如 Java 之类的语言中,抛出异常可能比函数的常规返回慢数百倍。

Java 中最大的性能成本是由打印异常的堆栈跟踪造成的,这是昂贵的,因为运行的程序必须检查编译它的源代码 。仅仅进入一个 try 块也不是空闲的,因为需要保存 CPU 内存寄存器的先前状态,因为它们可能需要在抛出异常的情况下恢复。

如果您将异常视为通常不会发生的异常情况,那么异常的缺点并不重要。这可能是传统的单体应用程序的情况,其中大部分代码库不必进行网络调用——一个操作格式良好的数据的函数不太可能遇到错误(除了错误的情况)。一旦您在代码中添加 I/O,无错误代码的梦想就会破灭:您可以忽略错误,但不能假装它们不存在!

try {

doSometing()

} catch (IOException e) {

// ignore it

}

与大多数其他编程语言不同,Golang 接受错误是不可避免的。 如果在单体架构时代还不是这样,那么在今天的模块化后端服务中,服务通常和外部 API 调用、数据库读取和写入以及与其他服务通信 。

以上所有方法都可能失败,解析或验证从它们接收到的数据(通常在无模式 JSON 中)也可能失败。Golang 使可以从这些调用返回的错误显式化,与普通返回值的等级相同。从函数调用返回多个值的能力支持这一点,这在大多数语言中通常是不可能的。Golang 的错误处理系统不仅仅是一种语言怪癖,它是一种将错误视为替代返回值的完全不同的方式!

重复 if err != nil

对 Go 错误处理的一个常见批评是被迫重复以下代码块:

res, err := doSomething()

if err != nil {

// Handle error

}

对于新用户来说,这可能会觉得没用而且浪费行数:在其他语言中需要 3 行的函数很可能会增长到 12 行 :

这么多行代码!这么低效!如果您认为上述内容不优雅或浪费代码,您可能忽略了我们检查代码中的错误的全部原因:我们需要能够以不同的方式处理它们!对 API 或数据库的调用可能会被重试。

有时事件的顺序很重要:调用外部 API 之前发生的错误可能不是什么大问题(因为数据从未通过发送),而 API 调用和写入本地数据库之间的错误可能需要立即注意,因为 这可能意味着系统最终处于不一致的状态。即使我们只想将错误传播给调用者,我们也可能希望用失败的解释来包装它们,或者为每个错误返回一个自定义错误类型。

并非所有错误都是相同的,并且向调用者返回适当的错误是 API 设计的重要部分,无论是对于内部包还是 REST API 。

不必担心在你的代码中重复 if err != nil ——这就是 Go 中的代码应该看起来的样子。

自定义错误类型和错误包装

从导出的方法返回错误时,请考虑指定自定义错误类型,而不是单独使用错误字符串。字符串在意外代码中是可以的,但在导出的函数中,它们成为函数公共 API 的一部分。更改错误字符串将是一项重大更改——如果没有明确的错误类型,需要检查返回错误类型的单元测试将不得不依赖原始字符串值!事实上,基于字符串的错误也使得在私有方法中测试不同的错误案例变得困难,因此您也应该考虑在包中使用它们。回到错误与异常的争论,返回错误也使代码比抛出异常更容易测试,因为错误只是要检查的返回值。不需要测试框架或在测试中捕获异常 。

可以在 database/sql 包中找到简单自定义错误类型的一个很好的示例。它定义了一个导出常量列表,表示包可以返回的错误类型,最著名的是 sql.ErrNoRows。虽然从 API 设计的角度来看,这种特定的错误类型有点问题(您可能会争辩说 API 应该返回一个空结构而不是错误),但任何需要检查空行的应用程序都可以导入该常量并在代码中使用它不必担心错误消息本身会改变和破坏代码。

对于更复杂的错误处理,您可以通过实现返回错误字符串的 Error() 方法来定义自定义错误类型。自定义错误可以包括元数据,例如错误代码或原始请求参数。如果您想表示错误类别,它们很有用。DigitalOcean 的本教程展示了如何使用自定义错误类型来表示可以重试的一类临时错误。

通常,错误会通过将低级错误与更高级别的解释包装起来,从而在程序的调用堆栈中传播。例如,数据库错误可能会以下列格式记录在 API 调用处理程序中:调用 CreateUser 端点时出错:查询数据库时出错:pq:检测到死锁。这很有用,因为它可以帮助我们跟踪错误在系统中传播的过程,向我们展示根本原因(数据库事务引擎中的死锁)以及它对更广泛系统的影响(调用者无法创建新用户)。

自 Go 1.13 以来,此模式具有特殊的语言支持,并带有错误包装。通过在创建字符串错误时使用 %w 动词,可以使用 Unwrap() 方法访问底层错误。除了比较错误相等性的函数 errors.Is() 和 errors.As() 外,程序还可以获取包装错误的原始类型或标识。这在某些情况下可能很有用,尽管我认为在确定如何处理所述错误时最好使用顶级错误的类型。

Panics

不要 panic()!长时间运行的应用程序应该优雅地处理错误而不是panic。即使在无法恢复的情况下(例如在启动时验证配置),最好记录一个错误并优雅地退出。panic比错误消息更难诊断,并且可能会跳过被推迟的重要关闭代码。

Logging

我还想简要介绍一下日志记录,因为它是处理错误的关键部分。通常你能做的最好的事情就是记录收到的错误并继续下一个请求。

除非您正在构建简单的命令行工具或个人项目,否则您的应用程序应该使用结构化的日志库,该库可以为日志添加时间戳,并提供对日志级别的控制。最后一部分特别重要,因为它将允许您突出显示应用程序记录的所有错误和警告。通过帮助将它们与信息级日志分开,这将为您节省无数时间。

微服务架构还应该在日志行中包含服务的名称以及机器实例的名称。默认情况下记录这些时,程序代码不必担心包含它们。您也可以在日志的结构化部分中记录其他字段,例如收到的错误(如果您不想将其嵌入日志消息本身)或有问题的请求或响应。只需确保您的日志没有泄露任何敏感数据,例如密码、API 密钥或用户的个人数据!

对于日志库,我过去使用过 logrus 和 zerolog,但您也可以选择其他结构化日志库。如果您想了解更多信息,互联网上有许多关于如何使用这些的指南。如果您将应用程序部署到云中,您可能需要日志库上的适配器来根据您的云平台的日志 API 格式化日志 - 没有它,云平台可能无法检测到日志级别等某些功能。

如果您在应用程序中使用调试级别日志(默认情况下通常不记录),请确保您的应用程序可以轻松更改日志级别,而无需更改代码。更改日志级别还可以暂时使信息级别甚至警告级别的日志静音,以防它们突然变得过于嘈杂并开始淹没错误。您可以使用在启动时检查以设置日志级别的环境变量来实现这一点。

原文:

GO语言学习系列八——GO函数(func)的声明与使用

GO是编译性语言,所以函数的顺序是无关紧要的,为了方便阅读,建议入口函数 main 写在最前面,其余函数按照功能需要进行排列

GO的函数 不支持嵌套,重载和默认参数

GO的函数 支持 无需声明变量,可变长度,多返回值,匿名,闭包等

GO的函数用 func 来声明,且左大括号 { 不能另起一行

一个简单的示例:

输出为:

参数:可以传0个或多个值来供自己用

返回:通过用 return 来进行返回

输出为:

上面就是一个典型的多参数传递与多返回值

对例子的说明:

按值传递:是对某个变量进行复制,不能更改原变量的值

引用传递:相当于按指针传递,可以同时改变原来的值,并且消耗的内存会更少,只有4或8个字节的消耗

在上例中,返回值 (d int, e int, f int) { 是进行了命名,如果不想命名可以写成 (int,int,int){ ,返回的结果都是一样的,但要注意:

当返回了多个值,我们某些变量不想要,或实际用不到,我们可以使用 _ 来补位,例如上例的返回我们可以写成 d,_,f := test(a,b,c) ,我们不想要中间的返回值,可以以这种形式来舍弃掉

在参数后面以 变量 ... type 这种形式的,我们就要以判断出这是一个可变长度的参数

输出为:

在上例中, strs ...string 中, strs 的实际值是b,c,d,e,这就是一个最简单的传递可变长度的参数的例子,更多一些演变的形式,都非常类似

在GO中 defer 关键字非常重要,相当于面相对像中的析构函数,也就是在某个函数执行完成后,GO会自动这个;

如果在多层循环中函数里,都定义了 defer ,那么它的执行顺序是先进后出;

当某个函数出现严重错误时, defer 也会被调用

输出为

这是一个最简单的测试了,当然还有更复杂的调用,比如调试程序时,判断是哪个函数出了问题,完全可以根据 defer 打印出来的内容来进行判断,非常快速,这种留给你们去实现

一个函数在函数体内自己调用自己我们称之为递归函数,在做递归调用时,经常会将内存给占满,这是非常要注意的,常用的比如,快速排序就是用的递归调用

本篇重点介绍了GO函数(func)的声明与使用,下一篇将介绍GO的结构 struct

彻底理解Golang Map

本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题

Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构

每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构

bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

bucket内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

map是个指针,底层指向hmap,所以是个引用类型

golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。

golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。

因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针

map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map

map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。

map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。

map默认是并发不安全的,原因如下:

Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。

场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes

如果想实现map线程安全,有两种方式:

方式一:使用读写锁 map + sync.RWMutex

方式二:使用golang提供的 sync.Map

sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。

golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。

map有3钟初始化方式,一般通过make方式创建

map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足

makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。

找到一个 B,使得 map 的装载因子在正常范围内

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):

m: 桶的个数

从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket

计算hash所在桶编号:

用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)

计算hash所在的槽位:

用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:

bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。

通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

我们只用研究最一般的赋值函数 mapassign 。

map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。

1.判断map是否为nil

每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程

根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可

经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程

通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数

删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

1、装载因子超过阈值

源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子

我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。

2、overflow 的 bucket 数量过多

在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)

不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难

对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)

nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的

在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。

转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可

遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。

map遍历是无序的,如果想实现有序遍历,可以先对key进行排序

为什么遍历 map 是无序的?

如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。

如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

GO语言(十三):使用 Go 和 Gin 开发 RESTful API(下)

当客户端在 发出POST请求时/albums,您希望将请求正文中描述的专辑添加到现有专辑数据中。

为此,您将编写以下内容:

1、编写代码

a.添加代码以将专辑数据添加到专辑列表。

在此代码中:

1)用于Context.BindJSON 将请求正文绑定到newAlbum。

2) album将从 JSON 初始化的结构附加到albums 切片。

3)向响应添加201状态代码,以及表示您添加的专辑的 JSON。

b.更改您的main函数,使其包含该router.POST函数,如下所示。

在此代码中:

1)将路径中的POST方法与 /albumspostAlbums函数相关联。

使用 Gin,您可以将处理程序与 HTTP 方法和路径组合相关联。这样,您可以根据客户端使用的方法将发送到单个路径的请求单独路由。

a.如果服务器从上一节开始仍在运行,请停止它。

b.从包含 main.go 的目录中的命令行,运行代码。

c.从不同的命令行窗口,用于curl向正在运行的 Web 服务发出请求。

该命令应显示添加专辑的标题和 JSON。

d.与上一节一样,使用curl检索完整的专辑列表,您可以使用它来确认添加了新专辑。

该命令应显示专辑列表。

当客户端向 发出请求时GET /albums/[id],您希望返回 ID 与id路径参数匹配的专辑。

为此,您将:

a.在您在上一节中添加的函数下方postAlbums,粘贴以下代码以检索特定专辑。

此getAlbumByID函数将提取请求路径中的 ID,然后找到匹配的专辑。

在此代码中:

(1)Context.Param用于从 URL 中检索id路径参数。当您将此处理程序映射到路径时,您将在路径中包含参数的占位符。

(2)循环album切片中的结构,寻找其ID 字段值与id参数值匹配的结构。如果找到,则将该album结构序列化为 JSON,并将其作为带有200 OK HTTP 代码的响应返回。

如上所述,实际使用中的服务可能会使用数据库查询来执行此查找。

(3)如果找不到专辑,则返回 HTTP 404错误。

b.最后,更改您的main,使其包含对router.GET的新调用,路径现在为/albums/:id ,如以下示例所示。

在此代码中:

(1)将/albums/:id路径与getAlbumByID功能相关联。在 Gin 中,路径中项目前面的冒号表示该项目是路径参数。

a.如果服务器从上一节开始仍在运行,请停止它。

b.在包含 main.go 的目录中的命令行中,运行代码以启动服务器。

c.从不同的命令行窗口,用于curl向正在运行的 Web 服务发出请求。

该命令应显示您使用其 ID 的专辑的 JSON。如果找不到专辑,您将收到带有错误消息的 JSON。

恭喜!您刚刚使用 Go 和 Gin 编写了一个简单的 RESTful Web 服务。

本节包含您使用本教程构建的应用程序的代码。

GO语言(三十):访问关系型数据库(上)

本教程介绍了使用 Godatabase/sql及其标准库中的包访问关系数据库的基础知识。

您将使用的database/sql包包括用于连接数据库、执行事务、取消正在进行的操作等的类型和函数。

在本教程中,您将创建一个数据库,然后编写代码来访问该数据库。您的示例项目将是有关老式爵士乐唱片的数据存储库。

首先,为您要编写的代码创建一个文件夹。

1、打开命令提示符并切换到您的主目录。

在 Linux 或 Mac 上:

在 Windows 上:

2、在命令提示符下,为您的代码创建一个名为 data-access 的目录。

3、创建一个模块,您可以在其中管理将在本教程中添加的依赖项。

运行go mod init命令,为其提供新代码的模块路径。

此命令创建一个 go.mod 文件,您添加的依赖项将在其中列出以供跟踪。

注意: 在实际开发中,您会指定一个更符合您自己需求的模块路径。有关更多信息,请参阅一下文章。

GO语言(二十五):管理依赖项(上)

GO语言(二十六):管理依赖项(中)

GO语言(二十七):管理依赖项(下)

接下来,您将创建一个数据库。

在此步骤中,您将创建要使用的数据库。您将使用 DBMS 本身的 CLI 创建数据库和表,以及添加数据。

您将创建一个数据库,其中包含有关黑胶唱片上的老式爵士乐录音的数据。

这里的代码使用MySQL CLI,但大多数 DBMS 都有自己的 CLI,具有类似的功能。

1、打开一个新的命令提示符。

在命令行,登录到您的 DBMS,如下面的 MySQL 示例所示。

2、在mysql命令提示符下,创建一个数据库。

3、切到您刚刚创建的数据库,以便您可以添加表。

4、在文本编辑器的 data-access 文件夹中,创建一个名为 create-tables.sql 的文件来保存用于添加表的 SQL 脚本。

将以下 SQL 代码粘贴到文件中,然后保存文件。

在此 SQL 代码中:

(1)删除名为album表。 首先执行此命令可以让您更轻松地稍后重新运行脚本。

(2)创建一个album包含四列的表:title、artist和price。每行的id值由 DBMS 自动创建。

(3)添加带有值的四行。

5、在mysql命令提示符下,运行您刚刚创建的脚本。

您将使用以下形式的source命令:

6、在 DBMS 命令提示符处,使用SELECT语句来验证您是否已成功创建包含数据的表。

接下来,您将编写一些 Go 代码进行连接,以便进行查询。

现在你已经有了一个包含一些数据的数据库,开始你的 Go 代码。

找到并导入一个数据库驱动程序,该驱动程序会将您通过database/sql包中的函数发出的请求转换为数据库可以理解的请求。

1、在您的浏览器中,访问SQLDrivers wiki 页面以识别您可以使用的驱动程序。

2、使用页面上的列表来识别您将使用的驱动程序。为了在本教程中访问 MySQL,您将使用 Go-MySQL-Driver。

3、请注意驱动程序的包名称 - 此处为github.com/go-sql-driver/mysql.

4、使用您的文本编辑器,创建一个用于编写 Go 代码的文件,并将该文件作为 main.go 保存在您之前创建的数据访问目录中。

5、进入main.go,粘贴以下代码导入驱动包。

在此代码中:

(1)将您的代码添加到main包中,以便您可以独立执行它。

(2)导入 MySQL 驱动程序github.com/go-sql-driver/mysql。

导入驱动程序后,您将开始编写代码以访问数据库。

现在编写一些 Go 代码,让您使用数据库句柄访问数据库。

您将使用指向结构的指针sql.DB,它表示对特定数据库的访问。

编写代码

1、进入 main.go,在import您刚刚添加的代码下方,粘贴以下 Go 代码以创建数据库句柄。

在此代码中:

(3)使用 MySQL 驱动程序Config和FormatDSN类型以收集连接属性并将它们格式化为连接字符串的 DSN。

该Config结构使代码比连接字符串更容易阅读。

(4)调用sql.Open 初始化db变量,传递 FormatDSN。

(5)检查来自 的错误sql.Open。例如,如果您的数据库连接细节格式不正确,它可能会失败。

为了简化代码,您调用log.Fatal结束执行并将错误打印到控制台。在生产代码中,您会希望以更优雅的方式处理错误。

(6)调用DB.Ping以确认连接到数据库有效。在运行时, sql.Open可能不会立即连接,具体取决于驱动程序。您在Ping此处使用以确认 database/sql包可以在需要时连接。

(7)检查来自Ping的错误,以防连接失败。

(8)Ping如果连接成功,则打印一条消息。

文件的顶部现在应该如下所示:

3、保存 main.go。

1、开始跟踪 MySQL 驱动程序模块作为依赖项。

使用go get 添加 github.com/go-sql-driver/mysql 模块作为您自己模块的依赖项。使用点参数表示“获取当前目录中代码的依赖项”。

2、在命令提示符下,设置Go 程序使用的DBUSER和DBPASS环境变量。

在 Linux 或 Mac 上:

在 Windows 上:

3、在包含 main.go 的目录中的命令行中,通过键入go run来运行代码。

连接成功了!

接下来,您将查询一些数据。


网站名称:go语言中进行子查询,go语言索引
标题URL:http://pwwzsj.com/article/hcghdh.html