python高阶函数详解,Python高阶函数
python函数高级
一、函数的定义
成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站建设、做网站、凌云网络推广、微信小程序开发、凌云网络营销、凌云企业策划、凌云品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供凌云建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com
函数是指将一组语句的集合通过一个名字(函数名)封装起来,想要执行这个函数,只需要调用函数名即可
特性:
减少重复代码
使程序变得可扩展
使程序变得易维护
二、函数的参数
2.1、形参和实参数
形参,调用时才会存在的值
实惨,实际存在的值
2.2、默认参数
定义:当不输入参数值会有一个默认的值,默认参数要放到最后
2.3、 关键参数
定义: 正常情况下,给函数传参数要安装顺序,不想按顺序可以用关键参数,只需要指定参数名即可,(指定了参数名的就叫关键参数),但是要求是关键参数必须放在位置参数(以位置顺序确定对应的参数)之后
2.4、非固定参数
定义: 如你的函数在传入参数时不确定需要传入多少个参数,就可以使用非固定参数
# 通过元组形式传递
# 通过列表形式传递
# 字典形式(通过k,value的方式传递)
# 通过变量的方式传递
三、函数的返回值
作用:
返回函数执行结果,如果没有设置,默认返回None
终止函数运行,函数遇到return终止函数
四、变量的作用域
全局变量和局部变量
在函数中定义的变量叫局部变量,在程序中一开始定义的变量叫全局变量
全局变量作用域整个程序,局部变量作用域是定义该变量的函数
当全局变量与局部变量同名是,在定义局部变量的函数内,局部变量起作用,其他地方全局变量起作用
同级的局部变量不能互相调用
想要函数里边的变量设置成全局变量,可用global进行设置
五、特殊函数
5.1、嵌套函数
定义: 嵌套函数顾名思义就是在函数里边再嵌套一层函数
提示 在嵌套函数里边调用变量是从里往外依次调用,意思就是如果需要调用的变量在当前层没有就会去外层去调用,依次内推
匿名函数
基于Lambda定义的函数格式为: lambda 参数:函数体
参数,支持任意参数。
匿名函数适用于简单的业务处理,可以快速并简单的创建函数。
# 与三元运算结合
5.3、高阶函数
定义:变量可以指向函数,函数的参数可以接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数称之为高阶函数 只需要满足一下任意一个条件,即是高阶函数
接收一个或多个函数作为输入
return返回另一个函数
5.4、递归函数
定义:一个函数可以调用其他函数,如果一个函数调用自己本身,这个函数就称为递归函数
在默认情况下Python最多能递归1000次,(这样设计师是为了防止被内存被撑死)可以通过sys.setrecursionlimit(1500)进行修改
递归实现过程是先一层一层的进,然后在一层一层的出来
必须有一个明确的条件结束,要不然就是一个死循环了
每次进入更深层次,问题规模都应该有所减少
递归执行效率不高,递归层次过多会导致站溢出
# 计算4的阶乘 4x3x2x1
# 打印数字从1-100
5.5、闭包现象
定义:内层函数调用外层函数的变量,并且内存函数被返回到外边去了
闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域
Python 函数进阶-高阶函数
高阶函数就是能够把函数当成参数传递的函数就是高阶函数,换句话说如果一个函数的参数是函数,那么这个函数就是一个高阶函数。
高阶函数可以是你使用 def 关键字自定义的函数,也有Python系统自带的内置高阶函数。
我们下面的例子中,函数 senior 的参数中有一个是函数,那么senior就是一个高阶函数;函数 tenfold 的参数不是函数,所以tenfold就只是一个普通的函数。
function:函数,可以是 自定义函数 或者是 内置函数;
iterable:可迭代对象,可迭代性数据。(容器类型数据和类容器类型数据、range对象、迭代器)
把可迭代对象中的数据一个一个拿出来,然后放在到指定的函数中做处理,将处理之后的结果依次放入迭代器中,最后返回这个迭代器。
将列表中的元素转成整型类型,然后返回出来。
列表中的每一个数依次乘 2的下标索引+1 次方。使用自定义的函数,配合实现功能。
参数的意义和map函数一样
filter用于过滤数据,将可迭代对象中的数据一个一个的放入函数中进行处理,如果函数返回值为真,将数据保留;反之不保留,最好返回迭代器。
保留容器中的偶数
参数含义与map、filter一致。
计算数据,将可迭代对象的中的前两个值放在函数中做出运算,得出结果在和第三个值放在函数中运算得出结果,以此类推,直到所有的结果运算完毕,返回最终的结果。
根据功能我们就应该直到,reduce中的函数需要可以接收两个参数才可以。
将列表中的数据元素组合成为一个数,
iterable:可迭代对象;
key:指定函数,默认为空;
reverse:排序的方法,默认为False,意为升序;
如果没有指定函数,就单纯的将数据安札ASCII进行排序;如果指定了函数,就将数据放入函数中进行运算,根据数据的结果进行排序,返回新的数据,不会改变原有的数据。
注意,如果指定了函数,排序之后是根据数据的结果对原数据进行排序,而不是排序计算之后的就结果数据。
将列表中的数据进行排序。
还有一点就是 sorted 函数可以将数据放入函数中进行处理,然后根据结果进行排序。
既然有了列表的内置函数sort,为什么我们还要使用sorted函数呢?
高阶函数就是将函数作为参数的函数。
文章来自
Python 之内置函数:filter、map、reduce、zip、enumerate
这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。
filter 函数原型如下:
第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。
简单记忆:对序列中的元素进行筛选,获取符合条件的序列。
返回结果为: ,使用 list 函数可以输入序列内容。
map 函数原型如下:
该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;
下述代码是一个简单的测试案例:
上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。
map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。
map 函数解决的问题:
reduce 函数原型如下:
第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。
测试代码如下:
最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。
简单记忆:对序列内所有元素进行累计操作。
zip 函数原型如下:
zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。
测试代码如下:
展示如何利用 * 操作符:
输出结果如下:
简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。
enumerate 函数原型如下:
参数说明:
该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
测试代码如下:
返回结果为: 。
本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册
当前文章:python高阶函数详解,Python高阶函数
浏览地址:http://pwwzsj.com/article/hcipci.html