go语言md5加密,go 文件md5

go语言 md5加密的密码怎样解密

理论上是不能破解的,因为md5采用的是不可逆算法。

创新互联公司主要从事成都做网站、成都网站制作、成都外贸网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务友谊,十年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575

有的网站上提供MD5解密,是因为有大量的存储空间来保存源码和加密后的密码,当解密时就是一个查询的过程,稍微复杂点的查询就无法完成。

golang jwt鉴权分析

技术栈 gin+jwt

鉴权流程:

调用token生成方法GenerateToken生成token, 请求api时带上token参数即可

token计算逻辑:

总结:md5加密账号和密码参数,根据账号密码私钥过期时间和jwt header 分别计算hash256值,将值用.符号连接,再进行hash,结果就是token值

api 验证token:

谁能通俗易懂地讲讲MD5加密原理?

MD5算法的原理可简要的叙述为:MD5码以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

在MD5算法中,首先需要对信息进行填充,这个数据按位(bit)补充,要求最终的位数对512求模的结果为448。也就是说数据补位后,其位数长度只差64位(bit)就是512的整数倍。

即便是这个数据的位数对512求模的结果正好是448也必须进行补位。

补位的实现过程:首先在数据后补一个1 bit; 接着在后面补上一堆0 bit, 直到整个数据的位数对512求模的结果正好为448。总之,至少补1位,而最多可能补512位。

扩展资料

当需要保存某些密码信息以用于身份确认时,如果直接将密码信息以明码方式保存在数据库中,不使用任何保密措施,系统管理员就很容易能得到原来的密码信息,这些信息一旦泄露, 密码也很容易被破译。为了增加安全性,有必要对数据库中需要保密的信息进行加密,这样,即使有人得到了整个数据库,如果没有解密算法,也不能得到原来的密码信息。

MD5算法可以很好地解决这个问题,因为它可以将任意长度的输入串经过计算得到固定长度的输出,而且只有在明文相同的情况下,才能等到相同的密文,并且这个算法是不可逆的,即便得到了加密以后的密文,也不可能通过解密算法反算出明文。

这样就可以把用户的密码以MD5值(或类似的其它算法)的方式保存起来,用户注册的时候,系统是把用户输入的密码计算成 MD5 值,然后再去和系统中保存的 MD5 值进行比较,如果密文相同,就可以认定密码是正确的,否则密码错误。

通过这样的步骤,系统在并不知道用户密码明码的情况下就可以确定用户登录系统的合法性。这样不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

MD5 算法还可以作为一种电子签名的方法来使用,使用 MD5算法就可以为任何文件(不管其大小、格式、数量)产生一个独一无二的“数字指纹”,借助这个“数字指纹”,通过检查文件前后 MD5 值是否发生了改变,就可以知道源文件是否被改动。

如何用MD5来加密数据表?

楼主你理解错了,

MD5只对数据加密是无法解密的,也就是说,你把100加密后,就无法解密得到100这个数字了,

MD5一般用于密码加密而不是数据加密,

比如,你的登录密码是123,加密后得到“we89we8......we9r8e”这个字符串,只把这个加密的字符串存入数据库,下次你用123登录的时候,要把你登录的密码进行MD5加密然后跟数据库那个加密字符串对比,

故,MD5不能对数据加密,否则你得不到数据了,

要实现数据加密,用DES加密//

补充:MD5加密密码,连数据库管理员都无法得知用户的密码,这就是MD5的好处,对于用户忘记密码,可以给用户一个密码保护,即提示问题和回答,用户回答对了可以重置密码,如果连密码保护都忘了,很对不起,你的帐号从此丢失,只能联系管理员删除以前的帐号新建一个新帐号,并且把数据都挪到新帐号上,

谁可以告诉我md5加密原理

2004年,已经被山东大学的王小云教授破解了。

以下是她在国际密码学会上发表的破解原理论文。

Collisions for Hash Functions

Collisions for Hash Functions

MD4, MD5, HAVAL-128 and RIPEMD

Xiaoyun Wang1, Dengguo Feng2, Xuejia Lai3, Hongbo Yu1

The School of Mathematics and System Science, Shandong University, Jinan250100, China1

Institute of Software, Chinese Academy of Sciences, Beijing100080, China2

Dept. of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China3

xywang@sdu.edu.cn1

revised on August 17, 2004

1 Collisions for MD5

MD5 is the hash function designed by Ron Rivest [9] as a strengthened version of MD4 [8]. In 1993 Bert den

Boer and Antoon Bosselaers [1] found pseudo-collision for MD5 which is made of the same message with two

different sets of initial value. H. Dobbertin[3] found a free-start collision which consists of two different 512-bit

messages with a chosen initial value 0 V I .

ED BA x C B F x C B AC x A V I 763 4 0 D , 97 62 5 0 , 341042 3 0x B , 2375 12 0 : 0 0 0 0 0

Our attack can find many real collisions which are composed of two 1024-bit messages with the original

initial value 0 IV of MD5:

10325476 0 , 98 0 , 89 0 67452301 0 : 0 0 0 0 0 x D badcfe x C xefcdab ,B x A IV

) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31

1 1 C C M M

) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31

2 2 C C N N i i

(non-zeros at position 4,11 and 14)

such that

) , ( 5 ) , ( 5 i i N M MD N M MD .

On IBM P690, it takes about one hour to find such M and M , after that, it takes only 15 seconds to 5

minutes to find i N and i N , so that ) , ( i N M and ) , ( i N M will produce the same hash same value. Moreover,

our attack works for any given initial value.

The following are two pairs of 1024-bit messages producing collisions, the two examples have the same 1-st

half 512 bits.

M

2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

X1

N1

d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35

M0

2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

X1

N1

d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35

H 9603161f f41fc7ef 9f65ffbc a30f9dbf

M

2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

X2

N2

313e82d8 5b8f3456 d4ac6dae c619c936 b4e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65f996 702af76f

M0

2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65f996 702af76f

H 8d5e7019 6324c015 715d6b58 61804e08

Table 1 Two pairs of collisions for MD5

2 Collisions for HAVAL-128

HAVAL is proposed in [10]. HAVAL is a hashing algorithm that can compress messages of any length in 3,4

or 5 passes and produce a fingerprint of length 128, 160, 192 or 224 bits.

Attack on a reduced version for HAVAL was given by P. R. Kasselman and W T Penzhorn [7], which

consists of last rounds for HAVAL-128. We break the full HAVAL-128 with only about the 26 HAVAL

computations. Here we give two examples of collisions of HAVAL-128, where

) 0 ,..., 0 , 2 ,.... 2 , 0 , 0 , 0 , 2 ( , 8 12 1 i i i C C M M

with non-zeros at position 0,11,18, and 31 ,... 2 , 1 , 0 i , such that ) ( ) ( M HAVAL M HAVAL .

M1

6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87

M1

6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87

H 95b5621c ca62817a a48dacd8 6d2b54bf

M2

6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963

6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963

H b0e99492 d64eb647 5149ef30 4293733c

Table 2 Two pairs of collision, where i=11 and these two examples differ only at the last word

3 Collisions for MD4

MD4 is designed by R. L. Rivest[8] . Attack of H. Dobbertin in Eurocrypto'96[2] can find collision with

probability 1/222. Our attack can find collision with hand calculation, such that

) 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 2 , 2 , 0 ( , 16 31 28 31 C C M M

and ) ( 4 ) ( 4 M MD M MD .

M1

4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c3e9

M1

4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 2794bf08 b9e8c3e9

H 5f5c1a0d 71b36046 1b5435da 9b0d807a

M2

4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 f713c240 a7b8cf69

4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 f713c240 a7b8cf69

H e0f76122 c429c56c ebb5e256 b809793

Table 3 Two pairs of collisions for MD4

4 Collisions for RIPEMD

RIPEMD was developed for the RIPE project (RACE Integrrity Primitives Evalustion, 1988-1992). In

1995, H. Dobbertin proved that the reduced version RIPEMD with two rounds is not collision-free[4]. We show

that the full RIPEMD also isnOt collision-free. The following are two pairs of collisions for RIPEMD:

) 2 , 0 , 0 , 0 , 0 , 2 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 ( , 31 31 18 20 ' C C M M i i

M1

579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 817104ff 264758a8 61064ea5

M1

579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 817104ff 264758a8 e1064ea5

H 1fab152 1654a31b 7a33776a 9e968ba7

M2

579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 e70c66b6

579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 670c66b6

H 1f2c159f 569b31a6 dfcaa51a 25665d24

Table 4 The collisions for RIPEMD

5 Remark

Besides the above hash functions we break, there are some other hash functions not having ideal security. For

example, collision of SHA-0 [6] can be found with about 240 computations of SHA-0 algorithms, and a collision

for HAVAL-160 can be found with probability 1/232.

Note that the messages and all other values in this paper are composed of 32-bit words, in each 32-bit word

the most left byte is the most significant byte.

1 B. den Boer, Antoon Bosselaers, Collisions for the Compression Function of MD5, Eurocrypto,93.

2 H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039, D. , Springer-Verlag, 1996.

3 H. Dobbertin, Cryptanalysis of MD5 compress, presented at the rump session of EurocrZpt'96.

4 Hans Dobbertin, RIPEMD with Two-round Compress Function is Not Collision-Free, J. Cryptology 10(1),

1997.

5 H. Dobbertin, A. Bosselaers, B. Preneel, "RIPMEMD-160: A Strengthened Version of RIPMMD," Fast

Software EncrZption, LNCS 1039, D.Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82.

6 FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washington D. C., April 1995.

7 P. R. Kasselman, W T Penzhorn , Cryptananlysis od reduced version of HAVAL, Vol. 36, No. 1, Electronic

Letters, 2000.

8 R. L. Rivest, The MD4 Message Digest Algorithm, Request for Comments (RFC)1320, Internet Activities

Board, Internet Privacy Task Force, April 1992.

9 R. L Rivest, The MD5 Message Digest Algorithm, Request for Comments (RFC)1321, Internet Activities

Board, Internet PrivacZ Task Force, April 1992.3RIPEMD-1281

10 Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL--A One-way Hashing Algorithm with Variable Length of Output,

Auscrypto'92.

go使用md5

在go中的系统加密包 crypto/md5 包中,提供了 New() 和 Sum() 函数来获取md5值。

16位md5加密字符串就是32位最中间的那16位,可以先使用md5计算出32位字符串,再取其中的[8:24]子字符串就可以了

输出测试结果为:

对面cmd5网站md5数据


网站栏目:go语言md5加密,go 文件md5
链接URL:http://pwwzsj.com/article/hdjsse.html