部署tensorflow后导入出现如下错误解决办法-创新互联

部署环境:

创新互联从2013年成立,先为惠水等服务建站,惠水等地企业,进行企业商务咨询服务。为惠水企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

操作系统:CentOS release 6.5 (Final)

Python版本:

Python 2.7.10 (default, Dec 22 2016, 14:45:25)

[GCC 4.8.2] on linux2

[root@paris ~]# python

Python 2.7.10 (default, Dec 22 2016, 14:45:25)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import tensorflow

Segmentation fault (core dumped)

[root@paris ~]#

解决方法:

问题:scipy和tensorflow冲突

部署环境:CentOS6 python2.7 scipy 0.12.0 tensorflow0.8.0

问题描述:

在上述环境中部署tensorflow0.8.0的时候,安装没有问题,import tensorflow时报错:Segmentation fault (core dumped)

探索过程:

1、用virtualenv创建一个不附带任何模块的纯净环境,安装tensorflow发现安装和使用一切正常

2、说明tensorflow和我的主机环境中某些模块有冲突

3、现在就要判断与哪个模块冲突,为了节省时间,我在这用了类似于索引顺序表查找的想法,对照我的实体机环境,一次安装多个模块,然后验证是否出错,直到出错,说明问题处在最后一组,而一次安装那些模块,是按照依赖关系来的,比如C依赖AB,我就把ABC放在一组,直接安装C,顺便也就安装依赖AB,按照这种方法,找到了一组冲突,就是安装sklearn之后tensorflow不能正常工作,出现如上报错。于是判定应该是sklearn或者依赖模块与tensorflow冲突。挨个尝试sklearn的依赖numpy、scipy时发现是scipy和tensorflow的冲突。

4、尝试解决冲突:考虑到可能是版本问题,尝试过多个版本的组合,发现scipy可以和tensorflow0.5.0共存,于是得到一个初步解决。但是,tensorflow的0.5.0缺少了一些新版的功能和优点,后通过下述方法解决

解决办法:

手工编译scipy:

到https://pypi.Python.org/pypi/scipy/

下载https://pypi.python.org/packages/05/5e/973bf71cfa865d962a68893e35e366a0a7ac0b713bc398b4e584c1bed982/scipy-0.17.1.tar.gz#md5=8987b9a3e3cd79218a0a423b21c8e4de

解压后安装:

python setup.py install

这样就不会有冲突了

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章标题:部署tensorflow后导入出现如下错误解决办法-创新互联
当前路径:http://pwwzsj.com/article/hicjc.html