如何处理python函数 python 函数 方法
优化Python编程的4个妙招
1. Pandas.apply() – 特征工程瑰宝
十年的五龙口网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整五龙口建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“五龙口网站设计”,“五龙口网站推广”以来,每个客户项目都认真落实执行。
Pandas 库已经非常优化了,但是大部分人都没有发挥它的最大作用。想想它一般会用于数据科学项目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征创造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函数。
在Pandas.apply()中,可以传递用户定义功能并将其应用到Pandas Series的所有数据点中。这个函数是Pandas库最好的扩展功能之一,它能根据所需条件分隔数据。之后便能将其有效应用到数据处理任务中。
2. Pandas.DataFrame.loc – Python数据操作绝妙技巧
所有和数据处理打交道的数据科学家(差不多所有人了!)都应该学会这个方法。
很多时候,数据科学家需要根据一些条件更新数据集中某列的某些值。Pandas.DataFrame.loc就是此类问题最优的解决方法。
3. Python函数向量化
另一种解决缓慢循环的方法就是将函数向量化。这意味着新建函数会应用于输入列表,并返回结果数组。在Python中使用向量化能至少迭代两次,从而加速计算。
事实上,这样不仅能加速代码运算,还能让代码更加简洁清晰。
4. Python多重处理
多重处理能使系统同时支持一个以上的处理器。
此处将数据处理分成多个任务,让它们各自独立运行。处理庞大的数据集时,即使是apply函数也显得有些迟缓。
关于优化Python编程的4个妙招,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。
python中函数的作用
Python 函数定义以及参数传递
1.函数定义
#形如def func(args...):
doSomething123
以关键字def 开头,后面是函数名和参数下面是函数处理过程。
举例:
def add( a, b ):
return a+b12
参数可以设定默认值,如:
def add( a, b=10 ): #注意:默认值参数只会运算一次
return a+b12
默认值参数只会运算一次是什么意思?
def func( a, b=[] ): #b的默认值指向一个空的列表,每次不带默认值都会指向这块内存
b.append(a) return b
print(func(1))#向默认的空列表里加入元素1 ,默认列表里已经是[1]print(func(2))#向默认的列表里加入元素2,默认列表里已经是[1,2]print(func(3,[]))#向b指向的空列表里加入元素1 ,默认列表里还是[1,2]print(func(4))#向默认的列表里加入元素4,默认列表里已经是[1,2,4]'''
结果:
[1]
[1, 2]
[3]
[1, 2, 4]
'''12345678910111213141516
这下明白为什么默认参数只计算一次了吧,函数参数不传递时默认值总是指向固定的内存空间,就是第一次计算的空间。
2.参数传递
def func(a, b):
print('a=%d, b=%d' % (a,b) )12
在使用函数时可以如下方式,结果都是相同的
func(10,20) #不使用参数名,需要按参数顺序传递func(a=10,b=20) #使用参数名可以不按顺序传递func(b=20,a=10)#结果:a=10, b=20a=10, b=20a=10, b=201234567
如果函数定义形式如下方式:
def func(*args): #这种定义会把传递的参数包成元组
print(args,type(args))
func(10,20)#结果:#(10, 20) class 'tuple'1234567
举一个和上述过程相反的例子:
def func(a,b):
print('a=%d, b=%d' % (a,b) )
a = (10, 20)
func(*a) #在调用函数使用`*`则会把元组解包成单个变量按顺序传入函数#结果:a=10, b=20123456
总结:*号在定义函数参数时,传入函数的参数会转换成元组,如果 *号在调用时则会把元组解包成单个元素。
另一种定义:
def func(**kw):#使用**定义参数会把传入参数包装成字典dict
print(kw, type(kw) )
func(a=10,b=20)#这种函数在使用时必须指定参数值,使用key=value这种形式#结果:{'b': 20, 'a': 10} class 'dict'12345
相反的例子:
def func(a,b):
print('a=%d, b=%d' % (a,b) )
d = {'a':10, 'b':20 }
func(**d) #在调用时使用**会把字典解包成变量传入函数。12345
def func(*args, **kw):#这种形式的定义代表可以接受任意类型的参数
print(args,kw )12
总结:**号在定义函数参数时,传入函数的参数会转换成字典,如果 **号在调用时则会把字典解包成单个元素。
lambda表达式
lambda表达式就是一种简单的函数
形如 f = lambda 参数1,参数2: 返回的计算值
例如:
add = lambda x,y: x+y
print(add(1,2))'''
结果:3
'''12345
请问Python如何创建有限线程来处理函数?
使用线程池:threadpool 模块。这是一个第三方模块,可以通过下面方法安装:
easy_install threadpool
python函数如何同时处理返回值以及返回内容?
python支持返回多个返回值,所以你可以考虑返回两个值来解决。
参考代码和如何调用示例如下:
Python 函数进阶-高阶函数
高阶函数就是能够把函数当成参数传递的函数就是高阶函数,换句话说如果一个函数的参数是函数,那么这个函数就是一个高阶函数。
高阶函数可以是你使用 def 关键字自定义的函数,也有Python系统自带的内置高阶函数。
我们下面的例子中,函数 senior 的参数中有一个是函数,那么senior就是一个高阶函数;函数 tenfold 的参数不是函数,所以tenfold就只是一个普通的函数。
function:函数,可以是 自定义函数 或者是 内置函数;
iterable:可迭代对象,可迭代性数据。(容器类型数据和类容器类型数据、range对象、迭代器)
把可迭代对象中的数据一个一个拿出来,然后放在到指定的函数中做处理,将处理之后的结果依次放入迭代器中,最后返回这个迭代器。
将列表中的元素转成整型类型,然后返回出来。
列表中的每一个数依次乘 2的下标索引+1 次方。使用自定义的函数,配合实现功能。
参数的意义和map函数一样
filter用于过滤数据,将可迭代对象中的数据一个一个的放入函数中进行处理,如果函数返回值为真,将数据保留;反之不保留,最好返回迭代器。
保留容器中的偶数
参数含义与map、filter一致。
计算数据,将可迭代对象的中的前两个值放在函数中做出运算,得出结果在和第三个值放在函数中运算得出结果,以此类推,直到所有的结果运算完毕,返回最终的结果。
根据功能我们就应该直到,reduce中的函数需要可以接收两个参数才可以。
将列表中的数据元素组合成为一个数,
iterable:可迭代对象;
key:指定函数,默认为空;
reverse:排序的方法,默认为False,意为升序;
如果没有指定函数,就单纯的将数据安札ASCII进行排序;如果指定了函数,就将数据放入函数中进行运算,根据数据的结果进行排序,返回新的数据,不会改变原有的数据。
注意,如果指定了函数,排序之后是根据数据的结果对原数据进行排序,而不是排序计算之后的就结果数据。
将列表中的数据进行排序。
还有一点就是 sorted 函数可以将数据放入函数中进行处理,然后根据结果进行排序。
既然有了列表的内置函数sort,为什么我们还要使用sorted函数呢?
高阶函数就是将函数作为参数的函数。
文章来自
python回调函数的使用方法
python回调函数的使用方法
在计算机程序设计中,回调函数,或简称回调(Callback),是指通过函数参数传递到其它代码的,某一块可执行代码的引用。这一设计允许了底层代码调用在高层定义的子程序
有两种类型的回调函数:
那么,在python中如何实现回调函数呢,看代码:
代码如下:
def my_callback(input):
print "function my_callback was called with %s input" % (input,)
def caller(input, func):
func(input)
for i in range(5):
caller(i, my_callback)
本文题目:如何处理python函数 python 函数 方法
文章路径:http://pwwzsj.com/article/hidiig.html