mysql怎么越来越慢 mysql运行慢怎么解决
Mysql 查询速度慢怎么办
问题
成都创新互联2013年开创至今,先为醴陵等服务建站,醴陵等地企业,进行企业商务咨询服务。为醴陵企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?
实验
我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。
写个简单的脚本,制造一批带主键和不带主键的表:
执行一下脚本:
现在执行以下 SQL 看看效果:
...
执行了 16.80s,感觉是非常慢了。
现在用一下 DBA 三板斧,看看执行计划:
感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。
那我们来 show warnings 看看 MySQL 改写后的 SQL:
我们格式化一下 SQL:
可以看到 MySQL 将
select from A where A.x not in (select x from B) //非关联子查询
转换成了
select from A where not exists (select 1 from B where B.x = a.x) //关联子查询
如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:
select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,
而关联子查询就需要循环迭代:
select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的第一条满足 rA 条件的记录。
显然,关联子查询的扫描成本会高于非关联子查询。
我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。
...
可以看到执行时间变成了 0.67s。
整理
我们诊断的关键点如下:
\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。
\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。
\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。
但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。
MySQL数据库服务器逐渐变慢分析与解决方法分享
一、检查系统的状态
通过操作系统的一些工具检查系统的状态,比如CPU、内存、交换、磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为cpu可能正等待IO的完成。除此之外,还应观注那些占用系统资源(cpu、内存)的进程。
1.使用sar来检查操作系统是否存在IO问题
#sar-u210—
即每隔2秒检察一次,共执行20次。
结果示例:
注:在redhat下,%system就是所谓的%wio。
Linux2.4.21-20.ELsmp
(YY075)05/19/2005
10:36:07AMCPU%user%nice%system%idle
10:36:09AMall0.000.000.1399.87
10:36:11AMall0.000.000.00100.00
10:36:13AMall0.250.000.2599.49
10:36:15AMall0.130.000.1399.75
10:36:17AMall0.000.000.00100.00
其中:
%usr指的是用户进程使用的cpu资源的百分比;
%sys指的是系统资源使用cpu资源的百分比;
%wio指的是等待io完成的百分比,这是值得观注的一项;
%idle即空闲的百分比。
如果wio列的值很大,如在35%以上,说明系统的IO存在瓶颈,CPU花费了很大的时间去等待I/O的完成。Idle很小说明系统CPU很忙。像以上的示例,可以看到wio平均值为11,说明I/O没什么特别的问题,而idle值为零,说明cpu已经满负荷运行了。
2.使用vmstat监控内存
cpu资源
[root@mysql1
~]#
vmstat
procs
———–memory———-—swap–
—–io—-–system–
—–cpu——
r
b
swpd
free
buff
cache
si
so
bi
bo
in
cs
us
sy
id
wa
st
72
25428
54712672264
14
43
53
59
1
198
vmstat
的输出那些信息值得关注?
io
bo:
磁盘写的数据量稍大,如果是大文件的写,10M以内基本不用担心,如果是小文件写2M以内基本正常
①
CPU问题
下面几列需要被察看,以确定cpu是否有问题
Processesinthe
run
queue
(procs
r)
Usertime
(cpu
us)
System
time
(cpu
sy)
Idle
time
(cpu
id)
问题情况:
如果processes
in
run
queue
(procs
r)的数量远大于系统中cpu的数量,将会使系统便慢。
如果这个数量是cpu的4倍的话,说明系统正面临cpu能力短缺,这将使系统运行速度大幅度降低
如果cpu的idle时间经常为0的话,或者系统占用时间(cpu
sy)是用户占用时间(cpu
us)两辈的话,系统面临缺少cpu资源
解决方案
:
解决这些情况,涉及到调整应用程序,使其能更有效的使用cpu,同时增加cpu的能力或数量
②内存问题
主要查看页导入的数值(swap中的si),如果该值比较大就要考虑内存,大概方法如下:
最简单的,加大RAM
减少RAM的需求
3.磁盘IO问题
处理方式:做raid10提高性能
4.网络问题
telnet一下MySQL对外开放的端口,如果不通的话,看看防火墙是否正确设置了。另外,看看MySQL是不是开启了skip-networking的选项,如果开启请关闭。
mysql数据库突然变慢 数据库变慢是什么原因
MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
MySQL速度变慢,怎么办
MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
mysql 存储过程执行太慢怎么优化
1.当我们请求mysql服务器的时候,MySQL前端会有一个监听,请求到了之后,服务器得到相关的SQL语句,执行之前(虚线部分为执行),还会做权限的判断
2.通过权限之后,SQL就到MySQL内部,他会在查询缓存中,看该SQL有没有执行过,如果有查询过,则把缓存结果返回,说明在MySQL内部,也有一个查询缓存.但是这个查询缓存,默认是不开启的,这个查询缓存,和我们的Hibernate,Mybatis的查询缓存是一样的,因为查询缓存要求SQL和参数都要一样,所以这个命中率是非常低的(没什么卵用的意思)。
3.如果我们没有开启查询缓存,或者缓存中没有找到对应的结果,那么就到了解析器,解析器主要对SQL语法进行解析
4.解析结束后就变成一颗解析树,这个解析树其实在Hibernate里面也是有的,大家回忆一下,在以前做过Hibernate项目的时候,是不是有个一个antlr.jar。这个就是专门做语法解析的工具.因为在Hibernate里面有HQL,它就是通过这个工具转换成SQL的,我们编程语言之所以有很多规范、语法,其实就是为了便于这个解析器解析,这个学过编译原理的应该知道.
5.得到解析树之后,不能马上执行,这还需要对这棵树进行预处理,也就是说,这棵树,我没有经过任何优化的树,预处理器会这这棵树进行一些预处理,比如常量放在什么地方,如果有计算的东西,把计算的结果算出来等等...
6.预处理完毕之后,此时得到一棵比较规范的树,这棵树就是要拿去马上做执行的树,比起之前的那棵树,这棵得到了一些优化
7.查询优化器,是MySQL里面最关键的东西,我们写任何一条SQL,比如SELECT * FROM USER WHERE USERNAME = toby AND PASSWORD = 1,它会怎么去执行?它是先执行username = toby还是password = 1?每一条SQL的执行顺序查询优化器就是根据MySQL对数据统计表的一些信息,比如索引,比如表一共有多少数据,MySQL都是有缓存起来的,在真正执行SQL之前,他会根据自己的这些数据,进行一个综合的判定,判断这一次在多种执行方式里面,到底选哪一种执行方式,可能运行的最快.这一步是MySQL性能中,最关键的核心点,也是我们的优化原则.我们平时所讲的优化SQL,其实说白了,就是想让查询优化器,按照我们的想法,帮我们选择最优的执行方案,因为我们比MySQL更懂我们的数据.MySQL看数据,仅仅只是自己收集到的信息,这些信息可能是不准确的,MySQL根据这些信息选了一个它自认为最优的方案,但是这个方案可能和我们想象的不一样.
8.这里的查询执行计划,也就是MySQL查询中的执行计划,比如要先执行username = toby还是password = 1
9.这个执行计划会传给查询执行引擎,执行引擎选择存储引擎来执行这一份传过来的计划,到磁盘中的文件中去查询,这个时候重点来了,影响这个查询性能最根本的原因是什么?就是硬盘的机械运动,也就是我们平时熟悉的IO,所以一条查询语句是快还是慢,就是根据这个时间的IO来确定的.那怎么执行IO又是什么来确定的?就是传过来的这一份执行计划.(优化就是制定一个我们认为最快的执行方案,最节省IO,和执行最快)
10.如果开了查询缓存,则返回结果给客户端,并且查询缓存也放一份。
MySQL数据库服务器逐渐变慢 该怎么分析与解决
我们先来看第一个阶段,MySQL慢的诊断思路,一般我们会从三个方向来做:
第一个方向是MySQL内部的观测
第二个方向是外部资源的观测
第三个方向是外部需求的改造
1.1 MySQL 内部观测
我们来看MySQL内部的观测,常用的观测手段是这样的,从上往下看,第一部分是Processlist,看一下哪个SQL压力不太正常,第二步是explain,解释一下它的执行计划,第三步我们要做Profilling,如果这个SQL能再执行一次的话, 就做一个Profilling,然后高级的DBA会直接动用performance_schema ,MySQL 5.7 以后直接动用sys_schema,sys_schema是一个视图,里面有便捷的各类信息,帮助大家来诊断性能。再高级一点,我们会动用innodb_metrics进行一个对引擎的诊断。
除了这些手段以外,大家还提出了一些乱七八糟的手段,我就不列在这了,这些是常规的一个MySQL的内部的状态观测的思路。除了这些以外,MySQL还陆陆续续提供了一些暴露自己状态的方案,但是这些方案并没有在实践中形成套路,原因是学习成本比较高。
1.2 外部资源观测
外部资源观测这部分,我引用了一篇文章,这篇文章的二维码我贴在上面了。这篇文章是国外的一个神写的,标题是:60秒的快速巡检,我们来看一下它在60秒之内对服务器到底做了一个什么样的巡检。一共十条命令,这是前五条,我们一条一条来看。
1.uptime,uptime告诉我们这个机器活了多久,以及它的平均的负载是多少。
2.dmesg -T | tail,告诉我们系统日志里边有没有什么报错。
3.vmstat 1,告诉我们虚拟内存的状态,页的换进换出有没有问题,swap有没有使用。
4. mpstat -P ALL,告诉我们CPU压力在各个核上是不是均匀的。
5.pidstat 1,告诉我们各个进程的对资源的占用大概是什么样子。
我们来看一下后五条:
首先是iostat-xz 1,查看IO的问题,然后是free-m内存使用率,之后两个sar,按设备网卡设备的维度,看一下网络的消耗状态,以及总体看TCP的使用率和错误率是多少。最后一条命令top,看一下大概的进程和线程的问题。
这个就是对于外部资源的诊断,这十条命令揭示了应该去诊断哪些外部资源。
1.3 外部需求改造
第三个诊断思路是外部的需求改造,我在这里引用了一篇文档,这篇文档是MySQL的官方文档中的一章,这一章叫Examples of Common Queries,文档中介绍了常规的SQL怎么写, 给出了一些例子。文章的链接二维码在slide上。
我们来看一下它其中提到的一个例子。
它做的事情是从一个表里边去选取,这张表有三列,article、dealer、price,选取每个作者的最贵的商品列在结果集中,这是它的最原始的SQL,非常符合业务的写法,但是它是个关联子查询。
关联子查询成本是很贵的,所以上面的文档会教你快速地把它转成一个非关联子查询,大家可以看到中间的子查询和外边的查询之间是没有关联性的。
第三步,会教大家直接把子查询拿掉,然后转成这样一个SQL,这个就叫业务改造,前后三个SQL的成本都不一样,把关联子查询拆掉的成本,拆掉以后SQL会跑得非常好,但这个SQL已经不能良好表义了,只有在诊断到SQL成本比较高的情况下才建议大家使用这种方式。
为什么它能够把一个关联子查询拆掉呢?
这背后的原理是关系代数,所有的SQL都可以被表达成等价的关系代数式,关系代数式之间有等价关系,这个等价关系通过变换可以把关联子查询拆掉。
上面的这篇文档是一个大学的教材,它从头教了关于代数和SQL之间的关系。然后一步步推导怎么去简化这句SQL。
第一,MySQL本身提供了很多命令来观察MySQL自身的各类状态,大家从上往下检一般能检到SQL的问题或者服务器的问题。
第二,从服务器的角度,我们从巡检的脚本角度入手,服务器的资源就这几种,观测手法也就那么几种,我们把服务器的资源全部都观察一圈就可以了。
第三,如果实在搞不定,需求方一定要按照数据库容易接受的方式去写SQL,这个成本会下降的非常快,这个是常规的MySQL慢的诊断思路。
新闻名称:mysql怎么越来越慢 mysql运行慢怎么解决
文章源于:http://pwwzsj.com/article/hiosse.html