go语言的缓存文件,go编译后的文件
go语言能做什么?
很多朋友可能知道Go语言的优势在哪,却不知道Go语言适合用于哪些地方。
创新互联建站是专业的亳州网站建设公司,亳州接单;提供成都网站设计、成都做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行亳州网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
1、 Go语言作为服务器编程语言,很适合处理日志、数据打包、虚拟机处理、文件系统、分布式系统、数据库代理等;网络编程方面。Go语言广泛应用于Web应用、API应用、下载应用等;除此之外,Go语言还可用于内存数据库和云平台领域,目前国外很多云平台都是采用Go开发。
2、 其实Go语言主要用作服务器端开发。其定位是用来开发"大型软件"的,适合于很多程序员一起开发大型软件,并且开发周期长,支持云计算的网络服务。Go语言能够让程序员快速开发,并且在软件不断的增长过程中,它能让程序员更容易地进行维护和修改。它融合了传统编译型语言的高效性和脚本语言的易用性和富于表达性。
3、 Go语言成功案例。Nsq:Nsq是由Go语言开发的高性能、高可用消息队列系统,性能非常高,每天能处理数十亿条的消息;
4、 Docker:基于lxc的一个虚拟打包工具,能够实现PAAS平台的组建。
5、 Packer:用来生成不同平台的镜像文件,例如VM、vbox、AWS等,作者是vagrant的作者
6、 Skynet:分布式调度框架。
7、 Doozer:分布式同步工具,类似ZooKeeper。
8、 Heka:mazila开源的日志处理系统。
9、 Cbfs:couchbase开源的分布式文件系统。
10、 Tsuru:开源的PAAS平台,和SAE实现的功能一模一样。
11、 Groupcache:memcahe作者写的用于Google下载系统的缓存系统。
12、 God:类似redis的缓存系统,但是支持分布式和扩展性。
13、 Gor:网络流量抓包和重放工具。
以上的就是关于go语言能做什么的内容介绍了。
【golang详解】go语言GMP(GPM)原理和调度
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
go语言无缓冲的channel
无缓冲的通道(unbuffered channel)是指在接收前没有能力保存任何值的通道。
这种类型的通道要求发送goroutine和接收goroutine同时准备好,才能完成发送和接收操作。否则,通道会导致先执行发送或接收操作的 goroutine 阻塞等待。
这种对通道进行发送和接收的交互行为本身就是同步的。其中任意一个操作都无法离开另一个操作单独存在。
阻塞:由于某种原因数据没有到达,当前协程(线程)持续处于等待状态,直到条件满足,才接触阻塞。
同步:在两个或多个协程(线程)间,保持数据内容一致性的机制。
下图展示两个 goroutine 如何利用无缓冲的通道来共享一个值:
在第 1 步,两个 goroutine 都到达通道,但哪个都没有开始执行发送或者接收。
在第 2 步,左侧的 goroutine 将它的手伸进了通道,这模拟了向通道发送数据的行为。这时,这个 goroutine 会在通道中被锁住,直到交换完成。
在第 3 步,右侧的 goroutine 将它的手放入通道,这模拟了从通道里接收数据。这个 goroutine 一样也会在通道中被锁住,直到交换完成。
在第 4 步和第 5 步,进行交换,并最终,在第 6 步,两个 goroutine 都将它们的手从通道里拿出来,这模拟了被锁住的 goroutine 得到释放。两个 goroutine 现在都可以去做别的事情了。
如果没有指定缓冲区容量,那么该通道就是同步的,因此会阻塞到发送者准备好发送和接收者准备好接收。
无缓冲channel: —— 同步通信
GO语言(十一):开始使用多模块工作区
本教程介绍 Go 中多模块工作区的基础知识。使用多模块工作区,您可以告诉 Go 命令您正在同时在多个模块中编写代码,并轻松地在这些模块中构建和运行代码。
在本教程中,您将在共享的多模块工作区中创建两个模块,对这些模块进行更改,并在构建中查看这些更改的结果。
本教程需要 go1.18 或更高版本。使用go.dev/dl中的链接确保您已在 Go 1.18 或更高版本中安装了 Go 。
首先,为您要编写的代码创建一个模块。
1、打开命令提示符并切换到您的主目录。
在 Linux 或 Mac 上:
在 Windows 上:
2、在命令提示符下,为您的代码创建一个名为工作区的目录。
3、初始化模块
我们的示例将创建一个hello依赖于 golang.org/x/example 模块的新模块。
创建你好模块:
使用 . 添加对 golang.org/x/example 模块的依赖项go get。
在 hello 目录下创建 hello.go,内容如下:
现在,运行 hello 程序:
在这一步中,我们将创建一个go.work文件来指定模块的工作区。
在workspace目录中,运行:
该go work init命令告诉为包含目录中模块的工作空间go创建一个文件 。go.work./hello
该go命令生成一个go.work如下所示的文件:
该go.work文件的语法与go.mod相同。
该go指令告诉 Go 应该使用哪个版本的 Go 来解释文件。它类似于文件中的go指令go.mod 。
该use指令告诉 Go在进行构建时hello目录中的模块应该是主模块。
所以在模块的任何子目录中workspace都会被激活。
2、运行工作区目录下的程序
在workspace目录中,运行:
Go 命令包括工作区中的所有模块作为主模块。这允许我们在模块中引用一个包,即使在模块之外。在模块或工作区之外运行go run命令会导致错误,因为该go命令不知道要使用哪些模块。
接下来,我们将golang.org/x/example模块的本地副本添加到工作区。然后,我们将向stringutil包中添加一个新函数,我们可以使用它来代替Reverse.
在这一步中,我们将下载包含该模块的 Git 存储库的副本golang.org/x/example,将其添加到工作区,然后向其中添加一个我们将从 hello 程序中使用的新函数。
1、克隆存储库
在工作区目录中,运行git命令来克隆存储库:
2、将模块添加到工作区
该go work use命令将一个新模块添加到 go.work 文件中。它现在看起来像这样:
该模块现在包括example.com/hello模块和 `golang.org/x/example 模块。
这将允许我们使用我们将在模块副本中编写的新代码,而不是使用命令stringutil下载的模块缓存中的模块版本。
3、添加新功能。
我们将向golang.org/x/example/stringutil包中添加一个新函数以将字符串大写。
将新文件夹添加到workspace/example/stringutil包含以下内容的目录:
4、修改hello程序以使用该功能。
修改workspace/hello/hello.go的内容以包含以下内容:
从工作区目录,运行
Go 命令在go.work文件指定的hello目录中查找命令行中指定的example.com/hello模块 ,同样使用go.work文件解析导入golang.org/x/example。
go.work可以用来代替添加replace 指令以跨多个模块工作。
由于这两个模块在同一个工作区中,因此很容易在一个模块中进行更改并在另一个模块中使用它。
现在,要正确发布这些模块,我们需要发布golang.org/x/example 模块,例如在v0.1.0. 这通常通过在模块的版本控制存储库上标记提交来完成。发布完成后,我们可以增加对 golang.org/x/example模块的要求hello/go.mod:
这样,该go命令可以正确解析工作区之外的模块。
调试Go语言的核心转储(Core Dumps)
英文原文链接【Go, the unwritten parts】 发表于2017/05/22 作者JBD是Go语言开发小组成员
检查程序的执行路径和当前状态是非常有用的调试手段。核心文件(core file)包含了一个运行进程的内存转储和状态。它主要是用来作为事后调试程序用的。它也可以被用来查看一个运行中的程序的状态。这两个使用场景使调试文件转储成为一个非常好的诊断手段。我们可以用这个方法来做事后诊断和分析线上的服务(production services)。
在这篇文章中,我们将用一个简单的hello world网站服务作为例子。在现实中,我们的程序很容易就会变得很复杂。分析核心转储给我们提供了一个机会去重构程序的状态并且查看只有在某些条件/环境下才能重现的案例。
作者注 : 这个调试流程只在Linux上可行。我不是很确定它是否在其它Unixs系统上工作。macOS对此还不支持。Windows现在也不支持。
在我们开始前,需要确保核心转储的ulimit设置在合适的范围。它的缺省值是0,意味着最大的核心文件大小是0。我通常在我的开发机器上将它设置成unlimited。使用以下命令:
接下来,你需要在你的机器上安装 delve 。
下面我们使用的 main.go 文件。它注册了一个简单的请求处理函数(handler)然后启动了HTTP服务。
让我们编译并生产二进制文件。
现在让我们假设,这个服务器出了些问题,但是我们并不是很确定问题的根源。你可能已经在程序里加了很多辅助信息,但还是无法从这些调试信息中找出线索。通常在这种情况下,当前进程的快照会非常有用。我们可以用这个快照深入查看程序的当前状态。
有几个方式来获取核心文件。你可能已经熟悉了奔溃转储(crash dumps)。它们是在一个程序奔溃的时候写入磁盘的核心转储。Go语言在缺省设置下不会生产奔溃转储。但是当你把 GOTRACEBACK 环境变量设置成“crash”,你就可以用 Ctrl+backslash 才触发奔溃转储。如下图所示:
上面的操作会使程序终止,将堆栈跟踪(stack trace)打印出来,并把核心转储文件写入磁盘。
另外个方法可以从一个运行的程序获得核心转储而不需要终止相应的进程。 gcore 可以生产核心文件而无需使运行中的程序退出。
根据上面的操作,我们获得了转储而没有终止对应的进程。下一步就是把核心文件加载进delve并开始分析。
差不多就这些。delve的常用操作都可以使用。你可以backtrace,list,查看变量等等。有些功能不可用因为我们使用的核心转储是一个快照而不是正在运行的进程。但是程序执行路径和状态全部可以访问。
域名解析和缓存
当浏览器访问某个网站域名或者应用服务通过域名方式访问API接口的时候,需要用IP和port建立TCP连接或者复用底层连接,IP地址的获取依赖对域名的解析,完成解析的角色称为域名解析器(dns resolver)。解析的大致过程就是检查cache是否有该记录,本地hosts文件是否有,都没有命中就查询dns server进行CNAME和A记录的查询。在linux系统下,dns server的IP一般在/etc/resolv.conf文件中。
域名解析常用dig命令,以及在 进行域名解析测试。
考虑到域名IP地址不是经常变动,减少查询dns的冗余,并显著降低高QPS应用服务查询dns的压力(最后一节有benchmark对比),需要对dns信息进行缓存。因为软件应用不同、开发语言不同、操作系统不同,dns resolver的实现和封装也不同,会遇到不同的层面的cache。比如windows的dns resolver会有cache,linux默认不缓存;go语言可以选择cgo或者自己实现的dns resolver;chrome浏览器也会有自己的cache。
dns cache除了好处以外,也带来了其他问题。比如dns cache可能被恶意病毒修改,将真实IP改成钓鱼网站的IP,对用户进行诱导和钓鱼。还有在服务发现的这种特定场景下,dns cache是不被允许的,会出现IP更新不及时导致API流量的损失和错误,例如部署上线或者宕机,相比之下,运维响应的时长会造成更大的损失。但为了解决这个问题,在client和server端中间增加一层代理,dns记录指向这个代理。如图:
代理职责一般有:
代理一般分为:
四层代理对外暴露的IP一般称为虚IP(VIP)
example_test.go
性能对比:
从对比中可看出:go的pure resolver因没有cache和网络不稳定的因素,总耗时较多。而cgo的resolver比较稳定且耗时较低。
linux或类unix系统是没有操作系统级别的dns cache。除非安装了dnsmasq或者
nscd(Name Service Caching Daemon),并开启。
标题名称:go语言的缓存文件,go编译后的文件
转载注明:http://pwwzsj.com/article/hopceg.html