关于Python损失函数例题的信息

从零开始用Python构建神经网络

从零开始用Python构建神经网络

创新互联是专业的叙州网站建设公司,叙州接单;提供成都网站设计、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行叙州网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。

这篇文章的内容是我的所学,希望也能对你有所帮助。

神经网络是什么?

介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。

神经网络包括以下组成部分

? 一个输入层,x

? 任意数量的隐藏层

? 一个输出层,?

? 每层之间有一组权值和偏置,W and b

? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数

下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构

用 Python 可以很容易的构建神经网络类

训练神经网络

这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。

因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。

每步训练迭代包含以下两个部分:

? 计算预测结果 ?,这一步称为前向传播

? 更新 W 和 b,,这一步成为反向传播

下面的顺序图展示了这个过程:

前向传播

正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。

损失函数

常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。

误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。

训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。

反向传播

我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。

为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。

回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法

如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。

但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。

这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。

现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:

Youtube:

整合并完成一个实例

既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。

让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果

我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。

注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。

下一步是什么?

幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:

? 除了 Sigmoid 以外,还可以用哪些激活函数

? 在训练网络的时候应用学习率

? 在面对图像分类任务的时候使用卷积神经网络

我很快会写更多关于这个主题的内容,敬请期待!

最后的想法

我自己也从零开始写了很多神经网络的代码

虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。

这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

正则化项L1和L2的直观理解及L1不可导处理

正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1-norm 和 ℓ2-norm ,中文称作 L1正则化 和 L2正则化 ,或者 L1范数 和 L2范数 。

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项。

下图是Python中Ridge回归的损失函数,式中加号后面一项α||w||22即为L2正则化项。

一般回归分析中回归w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。 L1正则化和L2正则化的说明如下:

L1正则化是指权值向量w中各个元素的 绝对值之和 ,通常表示为||w||1

L2正则化是指权值向量w中各个元素的 平方和然后再求平方根 (可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2

一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用? 下面是L1正则化和L2正则化的作用 ,这些表述可以在很多文章中找到。

L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择

L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0.

通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释 为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的) ,以及 为什么L2正则化可以防止过拟合 。

L1正则化和特征选择

假设有如下带L1正则化的损失函数:

J=J0+α∑w|w|(1)

其中J0是原始的损失函数,加号后面的一项是L1正则化项,α是正则化系数。注意到L1正则化是权值的 绝对值之和 ,J是带有绝对值符号的函数,因此J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0后添加L1正则化项时,相当于对J0做了一个约束。令L=α∑w|w|,则J=J0+L,此时我们的任务变成 在L约束下求出J0取最小值的解 。考虑二维的情况,即只有两个权值w1和w2,此时L=|w1|+|w2|对于梯度下降法,求解J0的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。如下图:

图1  L1正则化

图中等值线是J0的等值线,黑色方形是L函数的图形。在图中,当J0等值线与L图形首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)中的w可以取到很小的值。

类似,假设有如下带L2正则化的损失函数:

J=J0+α∑ww2(2)

同样可以画出他们在二维平面上的图形,如下:

图2  L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0与L相交时使得w1或w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,hθ(x)是我们的假设函数,那么线性回归的代价函数如下:

J(θ)=12m∑i=1m(hθ(x(i))−y(i))(3)

那么在梯度下降法中,最终用于迭代计算参数θ的迭代式为:

θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(4)

其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(5)

其中 λ就是正则化参数 。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

正则化参数的选择

L1正则化参数

通常越大的λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自 Quora上的问答 。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:

F(x)=f(x)+λ||x||1

其中x是要估计的参数,相当于上文中提到的w以及θ. 注意到L1正则化在某些位置是不可导的,当λ足够大时可以使得F(x)在x=0时取到最小值。如下图:

图3 L1正则化参数的选择

分别取λ=0.5和λ=2,可以看到越大的λ越容易使F(x)在x=0时取到最小值。

L2正则化参数

从公式5可以看到,λ越大,θj衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。

Reference

过拟合的解释:

正则化的解释:

正则化的解释:

正则化的数学解释(一些图来源于这里):

原文参考:blog.csdn.net/jinping_shi/article/details/52433975

交叉熵损失函数是什么?

平滑函数。

交叉熵损失函数,也称为对数损失或者logistic损失。当模型产生了预测值之后,将对类别的预测概率与真实值(由0或1组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项。

在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数。

扩展资料:

注意事项:

当预测类别为二分类时,交叉熵损失函数的计算公式如下图,其中y是真实类别(值为0或1),p是预测类别的概率(值为0~1之间的小数)。

计算二分类的交叉熵损失函数的python代码如下图,其中esp是一个极小值,第五行代码clip的目的是保证预测概率的值在0~1之间,输出的损失值数组求和后,就是损失函数最后的返回值。

参考资料来源:百度百科-交叉熵

参考资料来源:百度百科-损失函数

python的例题解法?

不看numpy一维数组的话,就是len相同的一个列表相同索引值相加吧。

x1=[1,2,3]

x2=[4,5,6]

x3=[]

def add():

for i in range(0,len(x1)):

x3.append(x1[i]+x2[i])

return x3

print(add())

用python实现红酒数据集的ID3,C4.5和CART算法?

ID3算法介绍

ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)

该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。

但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。

信息熵、条件熵和信息增益

信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。

设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x

1

,x

2

,x

3

,...x

n

为信息集合X的n个取值,则x i x_ix

i

的概率:

P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n

P(X=i)=p

i

,i=1,2,3,...,n

信息集合X的信息熵为:

H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}

H(X)=−

i=1

n

p

i

logp

i

条件熵:指已知某个随机变量的情况下,信息集合的信息熵。

设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y

1

,y

2

,y

3

,...y

m

组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为

P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}

P(x=i,y=j)=p

ij

条件熵:

H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}

H(X∣Y)=

j=1

m

p(y

j

)H(X∣y

j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}

H(X∣y

j

)=−

j=1

m

p(y

j

)

i=1

n

p(x

i

∣y

j

)logp(x

i

∣y

j

)

和贝叶斯公式:

p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)

p(x

i

y

j

)=p(x

i

∣y

j

)p(y

j

)

可以化简条件熵的计算公式为:

H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}

H(X∣Y)=

j=1

m

i=1

n

p(x

i

,y

j

)log

p(x

i

,y

j

)

p(x

i

)

信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。

d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)

d(X,Y)=H(X)−H(X∣Y)

python代码实现

import numpy as np

import math

def calShannonEnt(dataSet):

""" 计算信息熵 """

labelCountDict = {}

for d in dataSet:

label = d[-1]

if label not in labelCountDict.keys():

labelCountDict[label] = 1

else:

labelCountDict[label] += 1

entropy = 0.0

for l, c in labelCountDict.items():

p = 1.0 * c / len(dataSet)

entropy -= p * math.log(p, 2)

return entropy

def filterSubDataSet(dataSet, colIndex, value):

"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""

subDataSetList = []

for r in dataSet:

if r[colIndex] == value:

newR = r[:colIndex]

newR = np.append(newR, (r[colIndex + 1:]))

subDataSetList.append(newR)

return np.array(subDataSetList)

def chooseFeature(dataSet):

""" 通过计算信息增益选择最合适的特征"""

featureNum = dataSet.shape[1] - 1

entropy = calShannonEnt(dataSet)

bestInfoGain = 0.0

bestFeatureIndex = -1

for i in range(featureNum):

uniqueValues = np.unique(dataSet[:, i])

condition_entropy = 0.0

for v in uniqueValues: #计算条件熵

subDataSet = filterSubDataSet(dataSet, i, v)

p = 1.0 * len(subDataSet) / len(dataSet)

condition_entropy += p * calShannonEnt(subDataSet)

infoGain = entropy - condition_entropy #计算信息增益

if infoGain = bestInfoGain: #选择最大信息增益

bestInfoGain = infoGain

bestFeatureIndex = i

return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):

""" 通过训练集生成决策树 """

featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址

classList = list(dataSet[:, -1])

if len(set(classList)) == 1: # 只有一个类别

return classList[0]

if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类

return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #选择特征

bestFeatureName = featNames[bestFeatureIndex]

del featureName[bestFeatureIndex] #移除已选特征列

decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树

for v in featureValueUnique:

copyFeatureName = featureName[:]

subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)

decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, copyFeatureName)

return decisionTree

def classify(decisionTree, featnames, featList):

""" 使用训练所得的决策树进行分类 """

classLabel = None

root = decisionTree.keys()[0]

firstGenDict = decisionTree[root]

featIndex = featnames.index(root)

for k in firstGenDict.keys():

if featList[featIndex] == k:

if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找

classLabel = classify(firstGenDict[k], featnames, featList)

else:

classLabel = firstGenDict[k]

return classLabel

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。

from sklearn import datasets

from sklearn.model_selection import train_test_split

iris = datasets.load_iris()

data = np.c_[iris.data, iris.target]

scoreL = []

for i in range(1000): #对该过程进行10000次

trainData, testData = train_test_split(data) #区分测试集和训练集

featNames = iris.feature_names[:]

for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化

splitPoint = np.mean(trainData[:, i])

featNames[i] = featNames[i]+'='+'{:.3f}'.format(splitPoint)

trainData[:, i] = [1 if x = splitPoint else 0 for x in trainData[:, i]]

testData[:, i] = [1 if x = splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)

classifyLable = [classify(decisionTree, featNames, td) for td in testData]

scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

print 'score: ', np.mean(scoreL)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:

数据离散化

然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。

具体步骤如下:

对每个特征所包含的数值型特征值排序

对相邻两个特征值取均值,这些均值就是待选的划分点

用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益

选择信息使信息增益最大的划分点进行特征离散化

实现代码如下:

def filterRawData(dataSet, colIndex, value, tag):

""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""

filterDataList = []

for r in dataSet:

if (tag and r[colIndex] = value) or ((not tag) and r[colIndex] value):

newR = r[:colIndex]

newR = np.append(newR, (r[colIndex + 1:]))

filterDataList.append(newR)

return np.array(filterDataList)

def dataDiscretization(dataSet, featName):

""" 对数据每个特征的数值型特征值进行离散化 """

featureNum = dataSet.shape[1] - 1

entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #对于每一个特征

uniqueValues = sorted(np.unique(dataSet[:, featIndex]))

meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值

meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)

bestInfoGain = 0.0

bestMeanPoint = -1

for mp in meanPoint: #对于每个划分点

subEntropy = 0.0 #计算该划分点的信息熵

for tag in range(2): #分别划分为两类

subDataSet = filterRawData(dataSet, featIndex, mp, tag)

p = 1.0 * len(subDataSet) / len(dataSet)

subEntropy += p * calShannonEnt(subDataSet)

## 计算信息增益

infoGain = entropy - subEntropy

## 选择最大信息增益

if infoGain = bestInfoGain:

bestInfoGain = infoGain

bestMeanPoint = mp

featName[featIndex] = featName[featIndex] + "=" + "{:.3f}".format(bestMeanPoint)

dataSet[:, featIndex] = [1 if x = bestMeanPoint else 0 for x in dataSet[:, featIndex]]

return dataSet, featName

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

scoreL = []

scoreL_sk = []

for i in range(1000): #对该过程进行1000次

featNames = iris.feature_names[:]

trainData, testData = train_test_split(data) #区分测试集和训练集

trainData_tmp = copy.copy(trainData)

testData_tmp = copy.copy(testData)

discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化

for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集

splitPoint = float(discritizationFeatName[i].split('=')[-1])

testData[:, i] = [1 if x=splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)

classifyLable = [classify(decisionTree, featNames, td) for td in testData]

scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')

clf.fit(trainData[:, :-1], trainData[:, -1])

clf.predict(testData[:, :-1])

scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)

print 'score-sk: ', np.mean(scoreL_sk)

fig = plt.figure(figsize=(10, 4))

plt.subplot(1,2,1)

pd.Series(scoreL).hist(grid=False, bins=10)

plt.subplot(1,2,2)

pd.Series(scoreL_sk).hist(grid=False, bins=10)

plt.show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

两者准确率分别为:

score: 0.7037894736842105

score-sk: 0.7044736842105263

准确率分布如下:

两者的结果非常一样。

(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)

最后一次决策树图形如下:

决策树剪枝

由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:

C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|

C

a

(T)=

t=1

T

N

t

H

t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H

t

(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑

t=1

T

N

t

H

t

(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。

对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下

C4.5算法

ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。

C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:

S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}

SplitInfo(X,Y)=−

i

n

∣X∣

∣X

i

log

∣X∣

∣X

i

则信息增益率为:

G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}

GainRatio(X,Y)=

SplitInfo(X,Y)

d(X,Y)

关于ID3和C4.5算法

在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:

无法处理连续性特征数据

特征选取会倾向于分类较多的特征

没有解决过拟合的问题

没有解决缺失值的问题

即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:

通过信息最大增益的标准离散化连续的特征数据

在选择特征是标准从“最大信息增益”改为“最大信息增益率”

通过加入正则项系数对决策树进行剪枝

对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。

特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小

生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重

关于C4.5和CART回归树

作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:

C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。

C4.5的剪枝过于简单

C4.5只能用于分类运算不能用于回归

当特征有多个特征值是C4.5生成多叉树会使树的深度加深

————————————————

版权声明:本文为CSDN博主「Sarah Huang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:


当前文章:关于Python损失函数例题的信息
文章位置:http://pwwzsj.com/article/hsoesp.html