Flink中Transform怎么用
小编给大家分享一下Flink中Transform怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创新互联是一家专注于网站制作、成都网站制作与策划设计,山阳网站建设哪家好?创新互联做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:山阳等地区。山阳做网站价格咨询:13518219792
分组聚合
String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt"; StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); TupleTypeInfo> typeInfo = new TupleTypeInfo<>(Types.STRING, Types.DOUBLE, Types.LONG); TupleCsvInputFormat > tupleCsvInputFormat = new TupleCsvInputFormat<>(new Path(path), typeInfo); DataStreamSource > dataStreamSource = env.createInput(tupleCsvInputFormat, typeInfo); //或 DataStreamSource > dataStreamSource = env.readFile(tupleCsvInputFormat, path); SingleOutputStreamOperator > operator = dataStreamSource .filter(Objects::nonNull) // .map() // .flatMap() // .keyBy(0) .keyBy(tuple -> tuple.f0) .minBy(1); // .min() // .max(1); // .maxBy(1, false); // .sum(1); // .reduce(); // .process(); operator.print().setParallelism(1); env.execute();
分流/合流
String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt"; StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); PojoTypeInfotypeInfo = (PojoTypeInfo ) Types.POJO(TelemeterDTO.class); PojoCsvInputFormat inputFormat = new PojoCsvInputFormat<>(new Path(path), typeInfo, new String[]{"code", "value", "timestamp"}); DataStreamSource dataStreamSource = env.createInput(inputFormat, typeInfo); //分流 SplitStream splitStream = dataStreamSource .split(item -> { if (item.getValue() > 100) { return Collections.singletonList("high"); } return Collections.singletonList("low"); }); DataStream highStream = splitStream.select("high"); DataStream lowStream = splitStream.select("low"); //合流 ConnectedStreams connectedStreams = lowStream.connect(highStream); // DataStream unionDataStream = lowStream.union(highStream); //需要类型一致 SingleOutputStreamOperator > operator = connectedStreams .map(new CoMapFunction >() { @Override public Tuple3 map1(TelemeterDTO value) { return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp()); } @Override public Tuple3 map2(TelemeterDTO value) { return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp()); } }); operator.print(); env.execute();
UDF函数,提供底层支持
MapFunction
FilterFunction
ReduceFunction
ProcessFunction
SourceFunction
SinkFunction
富函数
富函数 包含了生命周期,及上下文相关信息,如
open() 可以在算子创建之初建立数据库连接
close() 在在算子生命结束之前关闭资源
以上是“Flink中Transform怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
当前文章:Flink中Transform怎么用
标题路径:http://pwwzsj.com/article/ieihog.html