Python中的测试工具有哪些
本篇内容介绍了“Python中的测试工具有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的雁峰网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
当我们在写程序的时候,我们需要通过测试来验证程序是否出错或者存在问题,但是,编写大量的测试来确保程序的每个细节都没问题会显得很繁琐。在Python中,我们可以借助一些标准模块来帮助我们自动完成测试过程,比如:
unittest: 一个通用的测试框架;
doctest: 一个更简单的模块,是为检查文档而设计的,但也非常适合用来编写单元测试。
下面,笔者将会简单介绍这两个模块在测试中的应用。
doctest
doctest模块会搜索那些看起来像是python交互式会话中的代码片段,然后尝试执行并验证结果。下面我们以doctest.testmod为例,函数doctest.testmod会读取模块中的所有文档字符串,查找看起来像是从交互式解释器中摘取的示例,再检查这些示例是否反映了实际情况。
我们先创建示例代码文件test_string_lower.py,完整代码如下:
# -*- coding: utf-8 -*- def string_lower(string): ''' 返回一个字符串的小写 :param string: type: str :return: the lower of input string >>> string_lower('AbC') 'abc' >>> string_lower('ABC') 'abc' >>> string_lower('abc') 'abc' ''' return string.lower() if __name__ == '__main__': import doctest, test_string_lower doctest.testmod(test_string_lower)
首先先对程序进行说明,函数string_lower用于返回输入字符串的小写,函数中的注释中,一共包含了3个测试实例,期望尽可能地包含各种测试情况,接着在主函数中导入doctest, test_string_lower,再运行doctest中的testmod函数即可进行测试。
接着,我们开始测试。首先,在命令行中输入python test_string_lower.py,运行后会发现什么都没有输出,但这其实是件好事,它表明程序中的所有测试都通过了!那么,如果我们想要获得更多的输出呢?可在运行脚本的时候增加参数-v,这时候命令变成python test_string_lower.py -v,输出的结果如下:
Trying: string_lower('AbC') Expecting: 'abc' ok Trying: string_lower('ABC') Expecting: 'abc' ok Trying: string_lower('abc') Expecting: 'abc' ok 1 items had no tests: test_string_lower 1 items passed all tests: 3 tests in test_string_lower.string_lower 3 tests in 2 items. 3 passed and 0 failed. Test passed.
可以看到,程序测试的背后还是发生了很多事。接着,我们尝试着程序出错的情况,比如我们不小心把函数的返回写成了:
return string.upper()
这其实是返回输入字符串的大写了,而我们测试的实例却返回了输入字符串的小写,再运行该脚本(加上参数-v),输出的结果如下:
Failed example: string_lower('abc') Expected: 'abc' Got: 'ABC' 1 items had no tests: test_string_lower ********************************************************************** 1 items had failures: 3 of 3 in test_string_lower.string_lower 3 tests in 2 items. 0 passed and 3 failed. ***Test Failed*** 3 failures.
这时候,程序测试失败,它不仅捕捉到了bug,还清楚地指出错误出在什么地方。我们不难把这个程序修改过来。
unittest
unittest类似于流行的Java测试框架JUnit,它比doctest更灵活,更强大,能够帮助你以结构化的方式来编写庞大而详尽的测试集。
我们以一个简单的示例入手,首先我们编写my_math.py脚本,代码如下:
# -*- coding: utf-8 -*- def product(x, y): ''' :param x: int, float :param y: int, float :return: x * y ''' return x * y
该函数实现的功能为:输入两个数x, y, 返回这两个数的乘积。接着是test_my_math.py脚本,完整的代码如下:
import unittest, my_math class ProductTestcase(unittest.TestCase): def setUp(self): print('begin test') def test_integers(self): for x in range(-10, 10): for y in range(-10, 10): p = my_math.product(x, y) self.assertEqual(p, x*y, 'integer multiplication failed') def test_floats(self): for x in range(-10, 10): for y in range(-10, 10): xx = x/10 yy = y/10 p = my_math.product(x, y) self.assertEqual(p, x * y, 'integer multiplication failed') if __name__ == '__main__': unittest.main()
函数unittest.main负责替你运行测试:在测试方法前执行setUp方法,示例化所有的TestCase子类,并运行所有名称以test打头的方法。assertEqual方法检车指定的条件(这里是相等),以判断指定的测试是成功了还是失败了。
接着,我们运行前面的测试,输出的结果如下:
begin test .begin test . ---------------------------------------------------------------------- Ran 2 tests in 0.001s OK
可以看到,该程序运行了两个测试,每个测试前都会输出'begin test',.表示测试成功,若测试失败,则返回的是F。
接着模拟测试出错的情形,将my_math函数中的product方法改成返回:
return x + y
再运行测试脚本,输出的结果如下:
begin test Fbegin test F ====================================================================== FAIL: test_floats (__main__.ProductTestcase) ---------------------------------------------------------------------- Traceback (most recent call last): File "test_my_math.py", line 20, in test_floats self.assertEqual(p, x * y, 'integer multiplication failed') AssertionError: -2.0 != 1.0 : integer multiplication failed ====================================================================== FAIL: test_integers (__main__.ProductTestcase) ---------------------------------------------------------------------- Traceback (most recent call last): File "test_my_math.py", line 12, in test_integers self.assertEqual(p, x*y, 'integer multiplication failed') AssertionError: -20 != 100 : integer multiplication failed ---------------------------------------------------------------------- Ran 2 tests in 0.001s FAILED (failures=2)
两条测试都未通过,返回的是F,并帮助你指出了错误的地方,接下来,你应该能快速地修复这个bug。
“Python中的测试工具有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
文章名称:Python中的测试工具有哪些
当前地址:http://pwwzsj.com/article/ihpicp.html