如何进行HanLP中人名识别分析
如何进行HanLP中人名识别分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
目前成都创新互联已为近1000家的企业提供了网站建设、域名、网站空间、网站托管、服务器租用、企业网站设计、浏阳网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
分词
在 HMM与分词、词性标注、命名实体识别 中说:
分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
分词也是采用了维特比算法的动态规划性质求解的,具体可参考: 文本挖掘的分词原理
角色观察
以“唱首张学友的歌情已逝”为例,
先将起始顶点 始##始,角色标注为:NR.A 和 NR.K,频次默认为1
iterator.next(); tagList.add(new EnumItem(NR.A, NR.K)); // 始##始 A K
对于第一个词“唱首”,它不存在于 nr.txt中,EnumItem
返回null,于是根据它本身的词性猜一个角色标注:
switch (vertex.guessNature()){ case nr: case nnt: default:{ nrEnumItem = new EnumItem(NR.A, PersonDictionary.transformMatrixDictionary.getTotalFrequency(NR.A)); } }
由于"唱首"的Attribute为 nz 16,不是nr 和 nnt,故默认给它指定一个角色NR.A,频率为nr.tr.txt中 NR.A 角色的总频率。
此时,角色列表如下:
接下来是顶点“张”,由于“张”在nr.txt中,因此PersonDictionary.dictionary.get(vertex.realWord)
返回EnumItem对象,直接将它加入到角色列表中:
EnumItemnrEnumItem = PersonDictionary.dictionary.get(vertex.realWord); tagList.add(nrEnumItem);
加入“张”之后的角色列表如下:
“唱首张学友的歌情已逝” 整句的角色列表如下:
至此,角色观察 部分 就完成了。
总结一下,对句子进行角色观察,首先是通过分词算法将句子分成若干个词,然后对每个词查询人名词典(PersonDictionary)。
若这个词在人名词典中(nr.txt),则记录该词的角色,所有的角色在
com.hankcs.hanlp.corpus.tag.NR.java
中定义。若这个词不在人名词典中,则根据该词的Attribute “猜一个角色”。在猜的过程中,有些词在核心词典中可能已经标注为nr或者nnt了,这时会做分裂处理。其他情况下则是将这个词标上NR.A角色,频率为 NR.A 在转移矩阵中的总词频。
维特比算法(动态规划)求解最优路径
在上图中,给每个词都打上了角色标记,可以看出,一个词可以有多个标记。而我们需要将这些词选择一条路径最短的角色路径。参考 隐马尔可夫模型维特比算法详解
ListnrList = viterbiComputeSimply(roleTagList);//some code....return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);
而这个过程,其实就是:维特比算法解码隐藏状态序列。在这里,五元组是:
隐藏状态集合 com.hankcs.hanlp.corpus.tag.NR.java 定义的各个人名标签
观察状态集合 已经分好词的各个tagList中元素(相当于分词结果)
转移概率矩阵 由 nr.tr.txt 文件生成得到。具体可参考:
发射概率 某个人名标签(隐藏状态)出现的次数 除以 所有标签出现的总次数
Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)
初始状态(始##始) 和 结束状态(末##末)
维特比解码隐藏状态的动态规划求解核心代码如下:
for (E cur : item.labelMap.keySet()) { double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)); if (perfect_cost > now) { perfect_cost = now; perfect_tag = cur; } }
transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()]
是前一个隐藏状态 pre.ordinal()
转换到当前隐藏状态cur.ordinal()
的转移概率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)
是当前隐藏状态的发射概率。二者“相减”得到一个概率 保存在double now
变量中,然后通过 for 循环找出 当前观察状态 对应的 最可能的(perfect_cost最小) 隐藏状态 perfect_tag。
至于为什么是上面那个公式来计算转移概率和发射概率,可参考论文:《 基于角色标注的中国人名自动识别研究 》
在上面例子中,得到的最优隐藏状态序列(最优路径)K->A->K->Z->L->E->A->A 如下:
nrList = {LinkedList@1065} size = 8
"K" 始##始
"A" 唱首
"K" 张
"Z" 学友
"L" 的
"E" 歌
"A" 情已逝
"A" 末##末
例如:
隐藏状态---观察状态
"K"----------始##始
最大匹配
有了最优隐藏序列:KAKZLEAA,接下来就是:后续的“最大匹配处理”了。
PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);
在最大匹配之前,会进行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定义了隐藏状态的具体含义。比如说,若最优隐藏序列中 存在 'U' 或者 'V',
U Ppf 人名的上文和姓成词 这里【有关】天培的壮烈
V Pnw 三字人名的末字和下文成词 龚学平等领导, 邓颖【超生】前
则会做“拆分处理”
switch(nr) { case U: //拆分成K B case V: //视情况拆分}
拆分完成之后,重新得到一个新的隐藏序列(模式)
String pattern = sbPattern.toString();
接下来,就用AC自动机进行最大模式匹配了,并将匹配的结果存储到“最优词网”中。当然,在这里就可以自定义一些针对特定应用的 识别处理规则
trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit(){ //..... wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll); }
将识别出来的人名保存到最优词网后,再基于最优词网调用一次维特比分词算法,得到最终的分词结果---细分结果。
if (wordNetOptimum.size() != preSize) { vertexList = viterbi(wordNetOptimum); if (HanLP.Config.DEBUG) { System.out.printf("细分词网:\n%s\n", wordNetOptimum); } }
源码上的人名识别 基本上是按照论文中的内容 来实现的。对于一个给定的句子,先进行下面三大步骤处理:
角色观察
维特比算法解码求解隐藏状态(求解各个分词 的 角色标记)
对角色标记进行最大匹配(可做一些后处理操作)
最后,再使用维特比算法进行一次分词,得到细分结果,即为最后的识别结果。
关于如何进行HanLP中人名识别分析问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
当前标题:如何进行HanLP中人名识别分析
网站路径:http://pwwzsj.com/article/iiggpp.html