python中matplotlib库直方图怎么绘制-创新互联

小编给大家分享一下python中matplotlib库直方图怎么绘制,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联主打移动网站、网站建设、网站设计、网站改版、网络推广、网站维护、主机域名、等互联网信息服务,为各行业提供服务。在技术实力的保障下,我们为客户承诺稳定,放心的服务,根据网站的内容与功能再决定采用什么样的设计。最后,要实现符合网站需求的内容、功能与设计,我们还会规划稳定安全的技术方案做保障。

例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?

一些概念及问题:

  • 把数据分为多少组进行统计

  • 组数要适当,太少会有较大的统计误差,太多规律不明显

  • 组数:将数据分组,共分为多少组

  • 组距:指每个小组的两个端点的距离

  • 组数:极差 / 组距,也就是 (大值-最小值)/ 组距  

  • 频数分布直方图与频率分布直方图,hist()方法需增加参数normed

  • 注意:一般来说能够使用plt.hist()方法绘制的直方图是那些没有统计过的数据,如果是统计过的数据为了能绘制像直方图一样的效果,可以使用条形图plt.bar()方法来绘制,不过中间过程就会稍微麻烦一些

from matplotlib import pyplot as plt
import matplotlib
font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文

a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
   101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
   95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
   123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
   132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
   123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
   115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
   106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
   130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
   106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
   133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
# 计算组数
d = 3 # 组距
num_bins = (max(a) - min(a)) // d # 计算组距的公式
plt.figure(figsize=(20, 8), dpi=80) # 设置图片大小
plt.hist(a, num_bins) # 加上normed=True属性之后变为频率分布直方图
# 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d))
plt.grid(alpha=0.3)
plt.show()

效果图

python中matplotlib库直方图怎么绘制

python主要应用领域有哪些

1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均为Python开发。3.人工智能应用,基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python。4、系统运维工程项目,自动化运维的标配就是python+Django/flask。5、金融理财分析,量化交易,金融分析。6、大数据分析。

以上是“python中matplotlib库直方图怎么绘制”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


分享文章:python中matplotlib库直方图怎么绘制-创新互联
网页路径:http://pwwzsj.com/article/iioji.html