五、MapReduce普通排序例子--统计手机号流量

1、需求

统计每一个手机号的总流量(上行流量+下行流量)、上行流量、下行流量,并且最后按照总流量进行手机号的排序。****

成都创新互联专注于企业成都营销网站建设、网站重做改版、景县网站定制设计、自适应品牌网站建设、H5场景定制成都做商城网站、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为景县等各大城市提供网站开发制作服务。

2、数据输入及输出格式

源数据比较敏感,这里就不展示出来了

输入格式为:

时间戳、电话号码、基站的物理地址、访问网址的ip、网站域名、数据包、接包数、上行/传流量、下行/载流量、响应码

分隔符为“\t”

输出格式为:

手机号码        上行流量        下行流量        总流量

并且根据总流量的大小进行排序

3、思路分析

map阶段:
切分字段,以手机号为key,value为一个bean对象,value保存对应手机号的上下行流量、以及总流量;key保存手机号,也就是类似的结构:

<1234567,<上下行流量,总流量>>

reduce阶段:
对于同一个key的(即同一手机号)的上下行流量进行累加,获取总的上下行流量、总流量。
并且最后需要对总流量进行排序,所以reduce输出的key为整个bean,value为空

4、具体程序

FlowBean.java

/*用于保存流量数据的自定义可序列化类*/
package PhoneData;

import lombok.Getter;
import lombok.NoArgsConstructor;
import lombok.Setter;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

@Getter
@Setter
@NoArgsConstructor
public class FlowBean implements WritableComparable {
    /**  该类是一个可序列化类,且可比较,所以要实现 WritableComparable接口
     * 上传、下载、总流量
     */
    private int upFlow;
    private int downFlow;
    private int sumFlow;

    public FlowBean(int upFlow, int downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    /**
     * 序列化方法
     *
     * @param dataOutput
     * @throws IOException
     */
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeInt(this.upFlow);
        dataOutput.writeInt(this.downFlow);
        dataOutput.writeInt(this.sumFlow);
    }

    /**
     * 反序列化
     * @param dataInput
     * @throws IOException
     */
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readInt();
        this.downFlow = dataInput.readInt();
        this.sumFlow = dataInput.readInt();
    }

    /**
     * 打印字符串方法
     * @return
     */
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append(this.upFlow);
        sb.append(" ");
        sb.append(this.downFlow);
        sb.append(" ");
        sb.append(this.sumFlow);
        return sb.toString();
    }

    /**
     * 对象的比较方法,用于排序比较
     * @param o
     * @return
     */
    @Override
    public int compareTo(FlowBean o) {
        return this.getSumFlow() > o.getSumFlow() ? -1 : 1;
    }
}

mapper:

package PhoneData;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class PhoneMapper extends Mapper {
    Text k = new Text();
    FlowBean v = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] fields = line.split("\t");

        //开始解析切割数据
        k.set(fields[1]);
        int downFlow = Integer.parseInt(fields[fields.length - 2]);
        int upFlow = Integer.parseInt(fields[fields.length - 3]);
        v.setDownFlow(downFlow);
        v.setUpFlow(upFlow);
        v.setSumFlow(upFlow + downFlow);

        context.write(k, v);
    }
}

reducer:

package PhoneData;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class PhoneReducer extends Reducer {

    FlowBean v = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        int upFlow = 0;
        int downFlow = 0;
        int sumFlow = 0;

        //对上传、下载、总流量进行累加
        for (FlowBean f : values) {
            upFlow += f.getUpFlow();
            downFlow += f.getDownFlow();
            sumFlow += f.getSumFlow();
        }

        //将汇总的数据写到新的bean中,然后输出
        v.setUpFlow(upFlow);
        v.setDownFlow(downFlow);
        v.setSumFlow(sumFlow);

        context.write(v, key);
    }
}

driver:

package PhoneData;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class PhoneDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        args = new String[]{"G:\\test\\A\\phone_data.txt", "G:\\test\\A\\phonetest5\\"};

        Configuration conf = new Configuration();

        //获取job对象
        Job job = Job.getInstance(conf);

        //配置driver,map,reduce类
        job.setJarByClass(PhoneDriver.class);
        job.setMapperClass(PhoneMapper.class);
        job.setReducerClass(PhoneReducer.class);

        //指定map和reduce的输出类
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        job.setOutputKeyClass(FlowBean.class);
        job.setOutputValueClass(Text.class);

        //指定输入数据,输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //提交job
        job.waitForCompletion(true);

    }
}

分享题目:五、MapReduce普通排序例子--统计手机号流量
文章位置:http://pwwzsj.com/article/ipdeei.html