Flink流计算常用算子是什么
这篇文章主要介绍“Flink流计算常用算子是什么”,在日常操作中,相信很多人在Flink流计算常用算子是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Flink流计算常用算子是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
10年积累的做网站、网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先做网站设计后付款的网站建设流程,更有宁波免费网站建设让你可以放心的选择与我们合作。
Flink和Spark类似,也是一种一站式处理的框架;既可以进行批处理(DataSet),也可以进行实时处理(DataStream)。
所以下面将Flink的算子分为两大类:一类是DataSet,一类是DataStream。
DataSet
一、Source算子
1. fromCollection
fromCollection:从本地集合读取数据
例:
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("1,张三", "2,李四", "3,王五", "4,赵六")
)
2. readTextFile
readTextFile:从文件中读取:
val textDataSet: DataSet[String] = env.readTextFile("/data/a.txt")
3. readTextFile:遍历目录
readTextFile可以对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式:
val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)
4. readTextFile:读取压缩文件
对于以下压缩类型,不需要指定任何额外的inputformat方法,flink可以自动识别并且解压。但是,压缩文件可能不会并行读取,可能是顺序读取的,这样可能会影响作业的可伸缩性。
压缩方法 | 文件扩展名 | 是否可并行读取 |
---|---|---|
DEFLATE | .deflate | no |
GZip | .gz .gzip | no |
Bzip2 | .bz2 | no |
XZ | .xz | no |
val file = env.readTextFile("/data/file.gz")
二、Transform转换算子
因为Transform算子基于Source算子操作,所以首先构建Flink执行环境及Source算子,后续Transform算子操作基于此:
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("张三,1", "李四,2", "王五,3", "张三,4")
)
1. map
将DataSet中的每一个元素转换为另外一个元素:
// 使用map将List转换为一个Scala的样例类
case class User(name: String, id: String)
val userDataSet: DataSet[User] = textDataSet.map {
text =>
val fieldArr = text.split(",")
User(fieldArr(0), fieldArr(1))
}
userDataSet.print()
2. flatMap
将DataSet中的每一个元素转换为0...n个元素:
// 使用flatMap操作,将集合中的数据:
// 根据第一个元素,进行分组
// 根据第二个元素,进行聚合求值
val result = textDataSet.flatMap(line => line)
.groupBy(0) // 根据第一个元素,进行分组
.sum(1) // 根据第二个元素,进行聚合求值
result.print()
3. mapPartition
将一个分区中的元素转换为另一个元素:
// 使用mapPartition操作,将List转换为一个scala的样例类
case class User(name: String, id: String)
val result: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
result.print()
4. filter
过滤出来一些符合条件的元素,返回boolean值为true的元素:
val source: DataSet[String] = env.fromElements("java", "scala", "java")
val filter:DataSet[String] = source.filter(line => line.contains("java"))//过滤出带java的数据
filter.print()
5. reduce
可以对一个dataset或者一个group来进行聚合计算,最终聚合成一个元素:
// 使用 fromElements 构建数据源
val source = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 使用map转换成DataSet元组
val mapData: DataSet[(String, Int)] = source.map(line => line)
// 根据首个元素分组
val groupData = mapData.groupBy(_._1)
// 使用reduce聚合
val reduceData = groupData.reduce((x, y) => (x._1, x._2 + y._2))
// 打印测试
reduceData.print()
6. reduceGroup
将一个dataset或者一个group聚合成一个或多个元素。
reduceGroup是reduce的一种优化方案;
它会先分组reduce,然后在做整体的reduce;这样做的好处就是可以减少网络IO:
// 使用 fromElements 构建数据源
val source: DataSet[(String, Int)] = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 根据首个元素分组
val groupData = source.groupBy(_._1)
// 使用reduceGroup聚合
val result: DataSet[(String, Int)] = groupData.reduceGroup {
(in: Iterator[(String, Int)], out: Collector[(String, Int)]) =>
val tuple = in.reduce((x, y) => (x._1, x._2 + y._2))
out.collect(tuple)
}
// 打印测试
result.print()
7. minBy和maxBy
选择具有最小值或最大值的元素:
// 使用minBy操作,求List中每个人的最小值
// List("张三,1", "李四,2", "王五,3", "张三,4")
case class User(name: String, id: String)
// 将List转换为一个scala的样例类
val text: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
val result = text
.groupBy(0) // 按照姓名分组
.minBy(1) // 每个人的最小值
8. Aggregate
在数据集上进行聚合求最值(最大值、最小值):
val data = new mutable.MutableList[(Int, String, Double)]
data.+=((1, "yuwen", 89.0))
data.+=((2, "shuxue", 92.2))
data.+=((3, "yuwen", 89.99))
// 使用 fromElements 构建数据源
val input: DataSet[(Int, String, Double)] = env.fromCollection(data)
// 使用group执行分组操作
val value = input.groupBy(1)
// 使用aggregate求最大值元素
.aggregate(Aggregations.MAX, 2)
// 打印测试
value.print()
Aggregate只能作用于元组上
注意:
要使用aggregate,只能使用字段索引名或索引名称来进行分组groupBy(0)
,否则会报一下错误:
Exception in thread "main" java.lang.UnsupportedOperationException: Aggregate does not support grouping with KeySelector functions, yet.
9. distinct
去除重复的数据:
// 数据源使用上一题的
// 使用distinct操作,根据科目去除集合中重复的元组数据
val value: DataSet[(Int, String, Double)] = input.distinct(1)
value.print()
10. first
取前N个数:
input.first(2) // 取前两个数
11. join
将两个DataSet按照一定条件连接到一起,形成新的DataSet:
// s1 和 s2 数据集格式如下:
// DataSet[(Int, String,String, Double)]
val joinData = s1.join(s2) // s1数据集 join s2数据集
.where(0).equalTo(0) { // join的条件
(s1, s2) => (s1._1, s1._2, s2._2, s1._3)
}
12. leftOuterJoin
左外连接,左边的Dataset中的每一个元素,去连接右边的元素
此外还有:
rightOuterJoin:右外连接,左边的Dataset中的每一个元素,去连接左边的元素
fullOuterJoin:全外连接,左右两边的元素,全部连接
下面以 leftOuterJoin 进行示例:
val data1 = ListBuffer[Tuple2[Int,String]]()
data1.append((1,"zhangsan"))
data1.append((2,"lisi"))
data1.append((3,"wangwu"))
data1.append((4,"zhaoliu"))
val data2 = ListBuffer[Tuple2[Int,String]]()
data2.append((1,"beijing"))
data2.append((2,"shanghai"))
data2.append((4,"guangzhou"))
val text1 = env.fromCollection(data1)
val text2 = env.fromCollection(data2)
text1.leftOuterJoin(text2).where(0).equalTo(0).apply((first,second)=>{
if(second==null){
(first._1,first._2,"null")
}else{
(first._1,first._2,second._2)
}
}).print()
13. cross
交叉操作,通过形成这个数据集和其他数据集的笛卡尔积,创建一个新的数据集
和join类似,但是这种交叉操作会产生笛卡尔积,在数据比较大的时候,是非常消耗内存的操作:
val cross = input1.cross(input2){
(input1 , input2) => (input1._1,input1._2,input1._3,input2._2)
}
cross.print()
14. union
联合操作,创建包含来自该数据集和其他数据集的元素的新数据集,不会去重:
val unionData: DataSet[String] = elements1.union(elements2).union(elements3)
// 去除重复数据
val value = unionData.distinct(line => line)
15. rebalance
Flink也有数据倾斜的时候,比如当前有数据量大概10亿条数据需要处理,在处理过程中可能会发生如图所示的状况:
这个时候本来总体数据量只需要10分钟解决的问题,出现了数据倾斜,机器1上的任务需要4个小时才能完成,那么其他3台机器执行完毕也要等待机器1执行完毕后才算整体将任务完成;所以在实际的工作中,出现这种情况比较好的解决方案就是接下来要介绍的—rebalance(内部使用round robin方法将数据均匀打散。这对于数据倾斜时是很好的选择。)
// 使用rebalance操作,避免数据倾斜
val rebalance = filterData.rebalance()
16. partitionByHash
按照指定的key进行hash分区:
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
val collection = env.fromCollection(data)
val unique = collection.partitionByHash(1).mapPartition{
line =>
line.map(x => (x._1 , x._2 , x._3))
}
unique.writeAsText("hashPartition", WriteMode.NO_OVERWRITE)
env.execute()
17. partitionByRange
根据指定的key对数据集进行范围分区:
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val collection = env.fromCollection(data)
val unique = collection.partitionByRange(x => x._1).mapPartition(line => line.map{
x=>
(x._1 , x._2 , x._3)
})
unique.writeAsText("rangePartition", WriteMode.OVERWRITE)
env.execute()
18. sortPartition
根据指定的字段值进行分区的排序:
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val ds = env.fromCollection(data)
val result = ds
.map { x => x }.setParallelism(2)
.sortPartition(1, Order.DESCENDING)//第一个参数代表按照哪个字段进行分区
.mapPartition(line => line)
.collect()
println(result)
三、Sink算子
1. collect
将数据输出到本地集合:
result.collect()
2. writeAsText
将数据输出到文件
Flink支持多种存储设备上的文件,包括本地文件,hdfs文件等
Flink支持多种文件的存储格式,包括text文件,CSV文件等
// 将数据写入本地文件
result.writeAsText("/data/a", WriteMode.OVERWRITE)
// 将数据写入HDFS
result.writeAsText("hdfs://node01:9000/data/a", WriteMode.OVERWRITE)
DataStream
和DataSet一样,DataStream也包括一系列的Transformation操作。
一、Source算子
Flink可以使用 StreamExecutionEnvironment.addSource(source) 来为我们的程序添加数据来源。
Flink 已经提供了若干实现好了的 source functions,当然我们也可以通过实现 SourceFunction 来自定义非并行的source或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source。
Flink在流处理上的source和在批处理上的source基本一致。大致有4大类:
基于 本地集合的source(Collection-based-source) 基于 文件的source(File-based-source)- 读取文本文件,即符合 TextInputFormat 规范的文件,并将其作为字符串返回 基于 网络套接字的source(Socket-based-source)- 从 socket 读取。元素可以用分隔符切分。 自定义的source(Custom-source)
下面使用addSource将Kafka数据写入Flink为例:
如果需要外部数据源对接,可使用addSource,如将Kafka数据写入Flink, 先引入依赖:
org.apache.flink
flink-connector-kafka-0.11_2.11
1.10.0
将Kafka数据写入Flink:
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")
val source = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
基于网络套接字的:
val source = env.socketTextStream("IP", PORT)
二、Transform转换算子
1. map
将DataSet中的每一个元素转换为另外一个元素:
dataStream.map { x => x * 2 }
2. FlatMap
采用一个数据元并生成零个,一个或多个数据元。将句子分割为单词的flatmap函数:
dataStream.flatMap { str => str.split(" ") }
3. Filter
计算每个数据元的布尔函数,并保存函数返回true的数据元。过滤掉零值的过滤器:
dataStream.filter { _ != 0 }
4. KeyBy
逻辑上将流分区为不相交的分区。具有相同Keys的所有记录都分配给同一分区。在内部,keyBy()是使用散列分区实现的。指定键有不同的方法。
此转换返回KeyedStream,其中包括使用被Keys化状态所需的KeyedStream:
dataStream.keyBy(0)
5. Reduce
被Keys化数据流上的“滚动”Reduce。将当前数据元与最后一个Reduce的值组合并发出新值:
keyedStream.reduce { _ + _ }
6. Fold
具有初始值的被Keys化数据流上的“滚动”折叠。将当前数据元与最后折叠的值组合并发出新值:
val result: DataStream[String] = keyedStream.fold("start")((str, i) => { str + "-" + i })
// 解释:当上述代码应用于序列(1,2,3,4,5)时,输出结果“start-1”,“start-1-2”,“start-1-2-3”,...
7. Aggregations
在被Keys化数据流上滚动聚合。min和minBy之间的差异是min返回最小值,而minBy返回该字段中具有最小值的数据元(max和maxBy相同):
keyedStream.sum(0);
keyedStream.min(0);
keyedStream.max(0);
keyedStream.minBy(0);
keyedStream.maxBy(0);
8. Window
可以在已经分区的KeyedStream上定义Windows。Windows根据某些特征(例如,在最后5秒内到达的数据)对每个Keys中的数据进行分组。这里不再对窗口进行详解,有关窗口的完整说明,请查看这篇文章:Flink 中极其重要的 Time 与 Window 详细解析
dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5)));
9. WindowAll
Windows可以在常规DataStream上定义。Windows根据某些特征(例如,在最后5秒内到达的数据)对所有流事件进行分组。
注意:在许多情况下,这是非并行转换。所有记录将收集在windowAll 算子的一个任务中。
dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
10. Window Apply
将一般函数应用于整个窗口。
注意:如果您正在使用windowAll转换,则需要使用AllWindowFunction。
下面是一个手动求和窗口数据元的函数:
windowedStream.apply { WindowFunction }
allWindowedStream.apply { AllWindowFunction }
11. Window Reduce
将函数缩减函数应用于窗口并返回缩小的值:
windowedStream.reduce { _ + _ }
12. Window Fold
将函数折叠函数应用于窗口并返回折叠值:
val result: DataStream[String] = windowedStream.fold("start", (str, i) => { str + "-" + i })
// 上述代码应用于序列(1,2,3,4,5)时,将序列折叠为字符串“start-1-2-3-4-5”
13. Union
两个或多个数据流的联合,创建包含来自所有流的所有数据元的新流。注意:如果将数据流与自身联合,则会在结果流中获取两次数据元:
dataStream.union(otherStream1, otherStream2, ...)
14. Window Join
在给定Keys和公共窗口上连接两个数据流:
dataStream.join(otherStream)
.where().equalTo()
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...})
15. Interval Join
在给定的时间间隔内使用公共Keys关联两个被Key化的数据流的两个数据元e1和e2,以便e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound
am.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2))
.upperBoundExclusive(true)
.lowerBoundExclusive(true)
.process(new IntervalJoinFunction() {...})
16. Window CoGroup
在给定Keys和公共窗口上对两个数据流进行Cogroup:
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...})
17. Connect
“连接”两个保存其类型的数据流。连接允许两个流之间的共享状态:
DataStream someStream = ... DataStream otherStream = ... ConnectedStreams connectedStreams = someStream.connect(otherStream)
// ... 代表省略中间操作
18. CoMap,CoFlatMap
类似于连接数据流上的map和flatMap:
connectedStreams.map(
(_ : Int) => true,
(_ : String) => false)connectedStreams.flatMap(
(_ : Int) => true,
(_ : String) => false)
19. Split
根据某些标准将流拆分为两个或更多个流:
val split = someDataStream.split(
(num: Int) =>
(num % 2) match {
case 0 => List("even")
case 1 => List("odd")
})
20. Select
从拆分流中选择一个或多个流:
SplitStream split;DataStream even = split.select("even");DataStream odd = split.select("odd");DataStream all = split.select("even","odd")
三、Sink算子
支持将数据输出到:
本地文件(参考批处理) 本地集合(参考批处理) HDFS(参考批处理)
除此之外,还支持:
sink到kafka sink到MySQL sink到redis
下面以sink到kafka为例:
val sinkTopic = "test"
//样例类
case class Student(id: Int, name: String, addr: String, sex: String)
val mapper: ObjectMapper = new ObjectMapper()
//将对象转换成字符串
def toJsonString(T: Object): String = {
mapper.registerModule(DefaultScalaModule)
mapper.writeValueAsString(T)
}
def main(args: Array[String]): Unit = {
//1.创建流执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//2.准备数据
val dataStream: DataStream[Student] = env.fromElements(
Student(8, "xiaoming", "beijing biejing", "female")
)
//将student转换成字符串
val studentStream: DataStream[String] = dataStream.map(student =>
toJsonString(student) // 这里需要显示SerializerFeature中的某一个,否则会报同时匹配两个方法的错误
)
//studentStream.print()
val prop = new Properties()
prop.setProperty("bootstrap.servers", "node01:9092")
val myProducer = new FlinkKafkaProducer011[String](sinkTopic, new KeyedSerializationSchemaWrapper[String](new SimpleStringSchema()), prop)
studentStream.addSink(myProducer)
studentStream.print()
env.execute("Flink add sink")
}
到此,关于“Flink流计算常用算子是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
分享名称:Flink流计算常用算子是什么
标题网址:http://pwwzsj.com/article/ipjdpe.html