PythonMerge函数原理及用法解析-创新互联

Merge函数的用法

在新抚等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计、网站建设 网站设计制作按需求定制制作,公司网站建设,企业网站建设,品牌网站建设,营销型网站建设,成都外贸网站制作,新抚网站建设费用合理。

简单来说Merge函数相当于Excel中的vlookup函数。当我们对2个表进行数据合并的时候需要通过指定两个表中相同的列作为key,然后通过key匹配到其中要合并在一起的values值。

然后对于merge函数在Pandas中分为1vs1, 多(m)vs1,以及多(m)vs多(m)这三种场景。但是平时用的最多的往往是多vs1的这种场景。也就是说2个表中其中一个表作为key的值会出现重复,而另外一个表作为key的值则是唯一。

这种场景也很好理解。例如:我们在生产环境中对服务器进行管理,一台服务器上可能装了各种各样的软件。那么如果是Excel表格来管理的话一个软件就占用一行信息。而服务器名是相同的。所以一个相同的服务器名就会出现多个。

这台服务器上安装了多少个软件,服务器名就会重复几次,也就是最终有几行。那么另外一个表要想读取这台服务器上安装的所有软件,那么服务器名就要作为key,各个软件的信息则是value值。最终被读取写入的那张表的key只能唯一。

我们看下面这个案例,是真实多v1的案例。为了数据安全我只能把截图分享给大家,并把服务器名遮掩希望大家谅解。

数据表1:作为查询的总表,其中服务器名这列就是B列中的信息会出现重复

Python Merge函数原理及用法解析

数据表2:下表为按照表1的key就是hostname来匹配,匹配到后按照表2的列名来读取信息写入到表2.这里同上因为服务器名敏感,所以也用马赛克挡住了,忘谅解。

Python Merge函数原理及用法解析

代码演示:

1. 读取表1,表2中的内容,作为DataFrame赋值给变量

#%%

import pandas as pd

#读取表1
df01 = pd.read_excel("./datas/new_all_datas.xlsx",
           header=5)
df01.head()

#%%

#读取表2
df02 = pd.read_excel("./datas/new_software_InputSheet.xlsx")
df02

#%%

分享标题:PythonMerge函数原理及用法解析-创新互联
文章出自:http://pwwzsj.com/article/jcods.html