NumPy线性代数的使用方法是什么

本篇内容介绍了“NumPy线性代数的使用方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册网站空间、营销软件、网站建设、拜城网站维护、网站推广。

NumPy是Python的一个科学计算库,是许多库(比如Pandas)的基础。


线性代数中的对象类型

线性代数中的对象(或数据结构)类型:

  • 标量:单个数字

  • 向量:数字数组

  • 矩阵:二维数字数组

  • 张量:N>2的N维数列

标量就是一个数字。我们将在下面的示例中看到,它可以用于向量化操作。

向量是一组数字。例如,5个元素的向量:

NumPy线性代数的使用方法是什么

我们可以在向量化运算中使用标量。对向量的每个元素执行指定的操作。例如

NumPy线性代数的使用方法是什么

矩阵是二维向量

NumPy线性代数的使用方法是什么

它看起来像是一个包含行和列的pandas数据框。实际上,pandas数据帧被转换成矩阵,然后输入到机器学习模型中。

张量是一个N维数数组,其中N大于2。张量主要用于输入数据为三维的深度学习模型。

NumPy线性代数的使用方法是什么

很难用数字来表示,但是可以把T看成3个3x2形状的矩阵。

shape方法可用于检查numpy数组的形状。

NumPy线性代数的使用方法是什么

数组的大小是通过乘以每个维度的大小来计算的。

NumPy线性代数的使用方法是什么


常用矩阵术语

如果行数等于列数,矩阵称为方阵。因此,上面的矩阵A是一个方阵。

单位矩阵,表示为I,是一个方阵,对角线上有是,其他位置全是0。NumPy的identity函数可以用来创建任意大小的单位矩阵。

NumPy线性代数的使用方法是什么

一个单位矩阵的特殊之处在于矩阵乘上它不会改变。从这个意义上讲,它与实数中的数字1相似。我们将在这篇文章的矩阵乘法部分用单位矩阵做例子。

矩阵的逆矩阵是与原始矩阵相乘得到单位矩阵的矩阵。

NumPy线性代数的使用方法是什么

不是每个矩阵都有一个逆矩阵。如果矩阵A有一个逆矩阵,那么它被称为可逆或非奇异


点乘与矩阵乘法

点乘和矩阵乘法是复杂机器学习和深度学习模型的组成部分,因此对它们进行全面的了解是非常有价值的。

两个向量的点积是元素相对于其位置的乘积之和。第一个向量的第一个元素乘以第二个向量的第一个元素,依此类推。这些积的和就是点积。在NumPy中计算点积的函数是dot()

让我们首先以numpy数组的形式创建两个简单的向量并计算点积。

NumPy线性代数的使用方法是什么

点积计算为(1*2)+(2*4)+(3*6),即28。

因为我们在相同的位置相乘,所以这两个向量的长度必须相同才能得到点积。

在数据科学领域,我们主要处理矩阵。矩阵是一组以结构化方式组合的行和列向量。因此,两个矩阵的相乘涉及向量的许多点积运算。我们再看一些例子就会更清楚了。我们先用NumPy创建两个2x2矩阵。

NumPy线性代数的使用方法是什么

NumPy线性代数的使用方法是什么

2x2矩阵有2行2列。行和列的索引以0开头。例如,A(索引为0的行)的第一行是[4,2]的数组。A的第一列是[4,0]的数组。第一行和第一列的元素是4。

我们可以访问单个行、列或元素,如下所示:

NumPy线性代数的使用方法是什么

这些是理解矩阵乘法的重要概念。

两个矩阵的相乘涉及到第一个矩阵的行和第二个矩阵的列之间的点乘。第一步是A的第一行和B的第一列之间的点积。这个点积的结果是在位置[0,0](即第一行,第一列)处得到的矩阵的元素。

NumPy线性代数的使用方法是什么

因此,得到的矩阵C在第一行和第一列将有一个 (4*0) + (2*4) 。C[0,0]=18。

下一步是A的第一行和B的第二列的点积。

NumPy线性代数的使用方法是什么

C在第一行和第二列有一个(4*0)+(2*4)。C[0,1]=8。

第一行A已完成,因此我们从A的第二行开始,并遵循相同的步骤。

NumPy线性代数的使用方法是什么

C在第二行和第一列有一个(0*4)+(3*1)。C[1,0]=3。

最后一步是A的第二行和B的第二列之间的点积。

NumPy线性代数的使用方法是什么

C在第二行和第二列有一个(0*0)+(3*4)。C[1,1]=12。

我们已经看到它是如何一步一步完成的。所有这些操作都是用np.dot操作:

NumPy线性代数的使用方法是什么

你可能还记得,我们已经提到过,单位矩阵乘以任何矩阵时不会改变矩阵。让我们举个例子。

NumPy线性代数的使用方法是什么

我们还提到,当一个矩阵乘以它的逆矩阵时,结果就是单位矩阵。让我们先创建一个矩阵,然后求它的逆矩阵。我们可以利用NumPy函数**linalg.inv()**求矩阵的逆。

NumPy线性代数的使用方法是什么

用B的逆矩阵C乘以B:

NumPy线性代数的使用方法是什么

我们得到了单位矩阵。


正如我们在向量点积中回忆的那样,两个向量的长度必须相同才能有一个点积。矩阵乘法中的每个点积运算都必须遵循这个规则。点积是在第一个矩阵的行和第二个矩阵的列之间进行的。因此,第一个矩阵的行和第二个矩阵的列的长度必须相同。

矩阵乘法的要求是第一个矩阵的列数必须等于第二个矩阵的行数。

例如,我们可以用一个3x2矩阵乘以一个2x3矩阵。

NumPy线性代数的使用方法是什么

结果矩阵的形状将是3x3,因为我们对A的每一行进行3点积运算,A有3行。确定结果矩阵形状的一种简单方法是从第一个矩阵中提取行数,从第二个矩阵中提取列数:

  • 3x2和2x3相乘返回3x3

  • 3x2和2x2相乘返回3x2

  • 2x4和4x3相乘返回2x3

“NumPy线性代数的使用方法是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


分享题目:NumPy线性代数的使用方法是什么
链接URL:http://pwwzsj.com/article/jdsosc.html