C++如何实现验证二叉搜索树

本文小编为大家详细介绍“C++如何实现验证二叉搜索树”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++如何实现验证二叉搜索树”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

成都创新互联自2013年创立以来,先为方正等服务建站,方正等地企业,进行企业商务咨询服务。为方正企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

验证二叉搜索树

Example 1:

Input:
2
/
1   3
Output: true

Example 2:

    5
/
1   4
/
3   6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node"s value
is 5 but its right child"s value is 4.

这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

C++ 解法一:

// Recursion without inorder traversal
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        return isValidBST(root, LONG_MIN, LONG_MAX);
    }
    bool isValidBST(TreeNode* root, long mn, long mx) {
        if (!root) return true;
        if (root->val <= mn || root->val >= mx) return false;
        return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
    }
};

Java 解法一:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        if (root == null) return true;
        return valid(root, Long.MIN_VALUE, Long.MAX_VALUE);
    }
    public boolean valid(TreeNode root, long low, long high) {
        if (root == null) return true;
        if (root.val <= low || root.val >= high) return false;
        return valid(root.left, low, root.val) && valid(root.right, root.val, high);
    }
}

这题实际上简化了难度,因为有的时候题目中的二叉搜索树会定义为左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:

   20       20
/          
20           20

它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

C++ 解法二:

// Recursion
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        if (!root) return true;
        vector vals;
        inorder(root, vals);
        for (int i = 0; i < vals.size() - 1; ++i) {
            if (vals[i] >= vals[i + 1]) return false;
        }
        return true;
    }
    void inorder(TreeNode* root, vector& vals) {
        if (!root) return;
        inorder(root->left, vals);
        vals.push_back(root->val);
        inorder(root->right, vals);
    }
};

Java 解法二:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        List list = new ArrayList();
        inorder(root, list);
        for (int i = 0; i < list.size() - 1; ++i) {
            if (list.get(i) >= list.get(i + 1)) return false;
        }
        return true;
    }
    public void inorder(TreeNode node, List list) {
        if (node == null) return;
        inorder(node.left, list);
        list.add(node.val);
        inorder(node.right, list);
    }
}

下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:

C++ 解法三:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        TreeNode *pre = NULL;
        return inorder(root, pre);
    }
    bool inorder(TreeNode* node, TreeNode*& pre) {
        if (!node) return true;
        bool res = inorder(node->left, pre);
        if (!res) return false;
        if (pre) {
            if (node->val <= pre->val) return false;
        }
        pre = node;
        return inorder(node->right, pre);
    }
};

当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

C++ 解法四:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack s;
        TreeNode *p = root, *pre = NULL;
        while (p || !s.empty()) {
            while (p) {
                s.push(p);
                p = p->left;
            }
            p = s.top(); s.pop();
            if (pre && p->val <= pre->val) return false;
            pre = p;
            p = p->right;
        }
        return true;
    }
};

Java 解法四:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        Stack s = new Stack();
        TreeNode p = root, pre = null;
        while (p != null || !s.empty()) {
            while (p != null) {
                s.push(p);
                p = p.left;
            }
            p = s.pop();
            if (pre != null && p.val <= pre.val) return false;
            pre = p;
            p = p.right;
        }
        return true;
    }
}

最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,可以参考博主之前的博客 Binary Tree Inorder Traversal,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:

C++ 解法五:

class Solution {
public:
    bool isValidBST(TreeNode *root) {
        if (!root) return true;
        TreeNode *cur = root, *pre, *parent = NULL;
        bool res = true;
        while (cur) {
            if (!cur->left) {
                if (parent && parent->val >= cur->val) res = false;
                parent = cur;
                cur = cur->right;
            } else {
                pre = cur->left;
                while (pre->right && pre->right != cur) pre = pre->right;
                if (!pre->right) {
                    pre->right = cur;
                    cur = cur->left;
                } else {
                    pre->right = NULL;
                    if (parent->val >= cur->val) res = false;
                    parent = cur;
                    cur = cur->right;
                }
            }
        }
        return res;
    }
};

读到这里,这篇“C++如何实现验证二叉搜索树”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注创新互联行业资讯频道。


网站栏目:C++如何实现验证二叉搜索树
本文地址:http://pwwzsj.com/article/jhdeog.html