高吞吐、线程安全之LRU缓存的示例分析
这篇文章主要介绍高吞吐、线程安全之LRU缓存的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
为恭城等地区用户提供了全套网页设计制作服务,及恭城网站建设行业解决方案。主营业务为成都网站制作、成都网站设计、恭城网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
之前实现了一个LRU缓存用来为关键字来查找它的id。数据结构非常有意思,因为要求的吞吐很大足以消除大量使用locks
和synchronized
关键字带来的性能问题,应用是用java实现的。
我想到一连串的原子引用分配会在ConcurrentHashMap中保持LRU保持LRU顺序,开始的时候我把value包装到entry中去,entry在双链表的LRU链中有一个节点,链的尾部保持的是最近使用的entry,头节点中存放的是当缓存达到一定的大小的时候可能会清空的entry。每一个节点都指向用来查找的entry。
当你通过key查找值的时候,缓存首先要查找map看看是否有这个value存在,如果不存在的话,它将依赖于加载器将value从数据源中以read-through的方式读出来并且以“如果缺失则添加”的方式添加的map中去。确保高吞吐的挑战是有效的维护LRU链。这个并发的哈希map是分段的而且在线程的水平在一定水平(当你构建map的时候你可以指定并发的水平)情况下的时候不会经历太多的线程竞争。但是LRU链不能以同样的方式被划分吗,为了解决这个问题,我引入了辅助的队列用来清除操作。
在cache中有六个基本的方法。对于缓存命中,查找包含两个基本操作:get和offer,对于换粗丢失包含四个基本的方法get、load、put和offer。在put方法上,我们也许需要追踪清空操作,在缓存命中的情况下get,我们在LRU链上被动的做一些清空叫做净化操作。
get : lookup entry in the map by key
load : load value from a data source
put : create entry and map it to key
offer: append a node at the tail of the LRU list that refers to a recently accessed entry
evict: remove nodes at the head of the list and associated entries from the map (after the cache reaches a certain size)
purge: delete unused nodes in the LRU list -- we refer to these nodes as holes, and the cleanup queue keeps track of these
清空操作和净化操作都是大批量的处理数据,我们来看一下每个操作的细节
get操作是按如下方式工作的:
get(K) -> V lookup entry by key k if cache hit, we have an entry e offer entry e try purge some holes else load value v for key k create entry e <- (k,v) try put entry e end return value e.v
如果key存在,我们在LRU链的尾部提供一个新的节点来表明,这是一个最近使用的值。get和offer的执行并不是原子操作(这里没有lock),所以我们不能说这个offered 节点指向最近使用的实体,但是肯定是当我们并发执行时获得的最近使用的实体。我们没有强制get和offer对在线程间执行的顺序,因为这可能会限制吞吐量。在offer一个节点之后,我们尝试着做一些清除和返回value的操作。下边我们详细看一下这offer和purge操作。
如果缓存丢失发生了,我们将调用加载器为这个key加载value,创建一个新的实体并把它放入到map中去,put操作如下:
put(E) -> E existing entry ex <- map.putIfAbsent(e.k, e) if absent offer entry e; if size reaches evict-threshold evict some entries end return entry e else, we have an existing entry ex return entry ex end
正如你所见的一样,有两个或这两个以上的线程把一个实体放入map的时候可能存在竞争,但是只允许一个成功并且会调用offer。在LRU链的尾部提供一个节点之后,我们需要检查是否缓存已经达到了它的阙值的大小,阙值是我们用来出发批量清空操作的标识。在这个特定的应用的场景下,阙值的设置要比容量的大小要小。清空操作小批量的发生而不是每一个实体加进来的时候都会发生,多线程或许会参与到清空操作中去,直到缓存的容量达到它的容量。上锁很容易但是线程却能是安全的。清空需要移除LRU链的头节点,这需要依赖细心的原子操作来避免在map中多线程的移除操作。
这个offer操作非常有意思,它总是尝试着创建一个节点但是并不试图在LRU中立即移除和删除那些不再使用的节点。
offer(E) if tail node doesn't refer to entry e assign current node c <- e.n create a new node n(e), new node refers to entry e if atomic compare-and-set node e.n, expect c, assign n add node n to tail of LRU list if node c not null set entry c.e to null, c now has a hole add node c to cleanup queue end end end
首先它会检查,链中尾部的节点没有指向已经访问的实体,这并没有什么不同除非所有的线程频繁的访问同样的键值对,它将会链部的尾的实体创建一个新的节点当这个实体不同的时候,在提供新的节点之前,它尝试为实体进一个比较和设置的操作,这将阻止多线程做同样的事情。
成功的分配节点的线程在LRU链的尾部提供了一个新的节点,这个操作和ConcurrentLinkedQueue中的find一样,依赖的算法在下边的文章中有描述 Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms。线程然后会检查实体之前是否和其他的节点有相关连,如果是这样的话,老的节点不会立即删除,但是会被标记为一个hole(它的实体的引用会被设置为空)
以上是“高吞吐、线程安全之LRU缓存的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
文章名称:高吞吐、线程安全之LRU缓存的示例分析
标题路径:http://pwwzsj.com/article/jhhgjh.html