docker中spark+scala安装配置
一、scala安装
首先下载scala压缩包
贵阳ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!
wget https://downloads.lightbend.com/scala/2.11.7/scala-2.11.7.tgz
解压
tar -zxvf scala-2.11.7.tgz
移动目录
mv scala-2.11.7 /usr/local/
改名
cd /usr/local/
mv scala-2.11.7 scala
配置环境变量
vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin
环境变量生效
source /etc/profile
查看scala版本
scala -version
分发scala到其他主机
scp -r /usr/local/scala/ root@Master:/usr/local/
scp -r /usr/local/scala/ root@Slave2:/usr/local/
二、spark安装
复制spark压缩包 到容器中
docker cp /root/spark-2.1.2-bin-hadoop2.4.tgz b0c77:/
查看并解压
在profile中添加spark环境变量
生效环境变量
source /etc/profile
编辑spark-env.sh
vim /usr/local/spark/conf/spark-env.sh
- JAVA_HOME:Java安装目录
- SCALA_HOME:Scala安装目录
- HADOOP_HOME:hadoop安装目录
- HADOOP_CONF_DIR:hadoop集群的配置文件的目录
- SPARK_MASTER_IP:spark集群的Master节点的ip地址
- SPARK_WORKER_MEMORY:每个worker节点能够最大分配给exectors的内存大小
- SPARK_WORKER_CORES:每个worker节点所占有的CPU核数目
- SPARK_WORKER_INSTANCES:每台机器上开启的worker节点的数目
修改slaves文件
cp slaves.template slaves
vi conf/slaves
scp -r /usr/local/spark/ Master:/usr/local
scp -r /usr/local/spark/ Slave2:/usr/local
同时其他两个节点也要修改 /etc/profile
启动spark
./sbin/start-all.sh
成功打开之后使用jps在Master、Slave1和Slave2节点上分别可以看到新开启的Master和Worker进程。
成功打开Spark集群之后可以进入Spark的WebUI界面,可以通过
SparkMaster_IP:8080
端口映射:
iptables -t nat -A DOCKER -p tcp --dport 8080 -j DNAT --to-destination 172.17.0.2:8080
此时我们可以通过映射到宿主机的端口访问,可见有两个正在运行的Worker节点。
打开Spark-shell
使用
spark-shell
推出spark-shell的命令是“:quit”
因为shell在运行,我们也可以通过
SparkMaster_IP:4040(172.17.0.2:4040)
访问WebUI查看当前执行的任务。
先进行端口映射:
iptables -t nat -A DOCKER -p tcp --dport 4040 -j DNAT --to-destination 172.17.0.2:4040
文章名称:docker中spark+scala安装配置
地址分享:http://pwwzsj.com/article/jhisps.html