如何在python中利用opencv实现一个肤色检测功能-创新互联

本篇文章给大家分享的是有关如何在python中利用opencv实现一个肤色检测功能,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联公司专注于开平企业网站建设,自适应网站建设,成都商城网站开发。开平网站建设公司,为开平等地区提供建站服务。全流程按需制作,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

1 椭圆肤色检测模型

原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。

YCRCB颜色空间

如何在python中利用opencv实现一个肤色检测功能

椭圆模型

如何在python中利用opencv实现一个肤色检测功能

代码

def ellipse_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256,256), dtype= np.uint8 )
  cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1)
 
  YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      CR= YCRCB[i,j,1]
      CB= YCRCB[i,j,2]
      if skinCrCbHist [CR,CB]>0:
        skin[i,j]= 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img,img,mask= skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
  cv2.waitKey()

效果

如何在python中利用opencv实现一个肤色检测功能

2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法

原理

针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold

代码

def cr_otsu(image):
  """YCrCb颜色空间的Cr分量+Otsu阈值分割
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
 
  (y, cr, cb) = cv2.split(ycrcb)
  cr1 = cv2.GaussianBlur(cr, (5, 5), 0)
  _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
 
  cv2.namedWindow("image raw", cv2.WINDOW_NORMAL)
  cv2.imshow("image raw", img)
  cv2.namedWindow("image CR", cv2.WINDOW_NORMAL)
  cv2.imshow("image CR", cr1)
  cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL)
  cv2.imshow("Skin Cr+OTSU", skin)
 
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("seperate", cv2.WINDOW_NORMAL)
  cv2.imshow("seperate", dst)
  cv2.waitKey()

效果

如何在python中利用opencv实现一个肤色检测功能

3 基于YCrCb颜色空间Cr, Cb范围筛选法

 原理

类似于第二种方法,只不过是对CR和CB两个通道综合考虑

代码

def crcb_range_sceening(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(ycrcb)
 
  skin = np.zeros(cr.shape,dtype= np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120:
        skin[i][j]= 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image,cv2.WINDOW_NORMAL)
  cv2.imshow(image,img)
  cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL)
  cv2.imshow(image+"skin2 cr+cb",skin)
 
  dst = cv2.bitwise_and(img,img,mask=skin)
  cv2.namedWindow("cutout",cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
 
  cv2.waitKey()

效果

如何在python中利用opencv实现一个肤色检测功能

4 HSV颜色空间H,S,V范围筛选法

原理

还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。

代码

def hsv_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
  (_h,_s,_v)= cv2.split(hsv)
  skin= np.zeros(_h.shape,dtype=np.uint8)
  (x,y)= _h.shape
 
  for i in range(0,x):
    for j in range(0,y):
      if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255):
        skin[i][j] = 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL)
  cv2.imshow(image + "hsv", skin)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()

效果

如何在python中利用opencv实现一个肤色检测功能

示例

import cv2
import numpy as np
 
 
def ellipse_detect(image):
  """
  :param image: img path
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256, 256), dtype=np.uint8)
  cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1)
 
  YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
  (y, cr, cb) = cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x, y) = cr.shape
  for i in range(0, x):
    for j in range(0, y):
      CR = YCRCB[i, j, 1]
      CB = YCRCB[i, j, 2]
      if skinCrCbHist[CR, CB] > 0:
        skin[i, j] = 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()
 
 
 
if __name__ == '__main__':
  ellipse_detect('./test.png')

以上就是如何在python中利用opencv实现一个肤色检测功能,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


网站题目:如何在python中利用opencv实现一个肤色检测功能-创新互联
本文链接:http://pwwzsj.com/article/jiied.html