java8的Stream特性是什么
本篇内容介绍了“java8的Stream特性是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
创新互联建站服务项目包括新干网站建设、新干网站制作、新干网页制作以及新干网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,新干网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到新干省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
java.util.Stream 表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样就可以将多个操作依次串起来。Stream 的创建需要指定一个数据源,比如 java.util.Collection的子类,List或者Set, Map不支持。Stream的操作可以串行stream()执行或者并行parallelStream()执行。
一、简介
java8新添加了一个特性:流Stream。Stream让开发者能够以一种声明的方式处理数据源(集合、数组等),它专注于对数据源进行各种高效的聚合操作(aggregate operation)和大批量数据操作(bulk data operation)。
Stream API将处理的数据源看做一种Stream(流),Stream(流)在Pipeline(管道)中传输和运算,支持的运算包含筛选、排序、聚合等,当到达终点后便得到最终的处理结果。
几个关键概念:
元素Stream是一个来自数据源的元素队列,Stream本身并不存储元素。
数据源(即Stream的来源)包含集合、数组、I/O channel、generator(发生器)等。
聚合操作类似SQL中的filter、map、find、match、sorted等操作
管道运算Stream在Pipeline中运算后返回Stream对象本身,这样多个操作串联成一个Pipeline,并形成fluent风格的代码。这种方式可以优化操作,如延迟执行(laziness)和短路( short-circuiting)。
内部迭代不同于java8以前对集合的遍历方式(外部迭代),Stream API采用访问者模式(Visitor)实现了内部迭代。
并行运算Stream API支持串行(stream() )或并行(parallelStream() )的两种操作方式。
Stream API的特点:
Stream API的使用和同样是java8新特性的 lambda表达式 密不可分,可以大大提高编码效率和代码可读性。
Stream API提供串行和并行两种操作,其中并行操作能发挥多核处理器的优势,使用fork/join的方式进行并行操作以提高运行速度。
Stream API进行并行操作无需编写多线程代码即可写出高效的并发程序,且通常可避免多线程代码出错的问题。
二、简单示例
我们来看一个简单的示例,统计整数数组中正数的个数:
在java8之前:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); long count = 0; for(Integer number: numbers) { if(number > 0) { count++; } } System.out.println("Positive count: " + count); }
在java8之后:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); long count = numbers.parallelStream().filter(i -> i>0).count(); System.out.println("Positive count: " + count); }
可以看到,上例中,使用filter()方法对数组进行了过滤,使用count()方法对过滤后的数组进行了大小统计,且使parallelStream()方法为集合创建了并行流,自动采用并行运算提高速度。在更复杂的场景,还可以用forEach()、map()、limit()、sorted()、collect()等方法进行进一步的流运算。
三、典型接口详解
本节以典型场景为例,列出Stream API常用接口的用法,并附上相应代码。
需要说明的是,Stream API中存在很多方法重载,同名方法本文中可能仅列举一个,请读者注意~
3.1 Stream的生成
java8 Stream API支持串行或并行的方式,可以简单看下jdk1.8 Collection接口的源码(注释只截取部分):
/** * @return a sequential {@code Stream} over the elements in this collection * @since 1.8 */ default Streamstream() { return StreamSupport.stream(spliterator(), false); } /** * @return a possibly parallel {@code Stream} over the elements in this collection * @since 1.8 */ default Stream parallelStream() { return StreamSupport.stream(spliterator(), true); }
可以看出,在集合类的接口(Collection)中,分别用两种方式来生成:
1. 串行流 : stream()
2. 并行流 : parallelStream()
应该注意的是,使用parallelStream()生成并行流后,对集合元素的遍历是无序的。
3.2 forEach()方法
简单看下forEach()方法的源码(注释只截取部分):
/** * Performs an action for each element of this stream. */ void forEach(Consumer super T> action);
forEach()方法的参数为一个Consumer(消费函数,一个函数式接口)对象,forEach()方法用来迭代流中的每一个数据,例如:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); numbers.stream().forEach(n -> System.out.println("List element: " + n)); }
上例中,对数组的每个元素进行串行遍历,并打印每个元素的值。
ps:
集合的顶层接口Iterable中也投forEach方法,可以直接对数组元素进行遍历:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); numbers.forEach(n -> System.out.println("List element: " + n)); }
当然用Strem API的好处不仅仅是遍历~~~
3.3 map()方法
简单看下map()方法的源码(注释只截取部分):
/** * Returns a stream consisting of the results of applying the given function to the elements of this stream. * @paramThe element type of the new stream * @param mapper a non-interfering, * stateless * function to apply to each element * @return the new stream */ Stream map(Function super T, ? extends R> mapper);
map()方法的参数为Function(函数式接口)对象,map()方法将流中的所有元素用Function对象进行运算,生成新的流对象(流的元素类型可能改变)。举例如下:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); numbers.stream().map( n -> Math.abs(n)).forEach(n -> System.out.println("Element abs: " + n)); }
上例中,用map()方法计算了所有数组元素的绝对值并生成了一个新的流,然后再用forEach()遍历打印。
3.4 flatMap()方法
简单看下flatMap()方法的源码(省略注释):
Stream flatMap(Function super T, ? extends Stream extends R>> mapper);
显然,跟map()方法不同的是,Function函数的返回值类型是Stream extends R>类型,而不是R类型,即Function函数返回一个Stream流,这样flatMap()能够将一个二维的集合映射成一个一维的集合,比map()方法拥有更高的映射深度(此处可能有一点绕,可结合例子理解),作个简单示例如下:
有一个字符串数组:
Listlist = Arrays.asList("1 2", "3 4", "5 6");
其有三个元素,每个元素有两个数组并用空格隔开,如果每个元素以空格分割成2个元素,并遍历打印这6个元素,
用flatMap()方法如下:
list.stream().flatMap(item -> Arrays.stream(item.split(" "))).forEach(System.out::println);
而用map()方法:
list.stream().map(item -> Arrays.stream(item.split(" "))).forEach(n ->n.forEach(System.out::println));
可见,用map()方法,返回了一个“流中流”,需要在每个Stream元素遍历时,再加一层forEach进行遍历。
3.5 filter()方法
简单看下filter()方法的源码(注释只截取部分):
/** * Returns a stream consisting of the elements of this stream that match the given predicate. * *This is an intermediate operation. * * @param predicate a non-interfering, * stateless * predicate to apply to each element to determine if it should be included * @return the new stream */ Stream
filter(Predicate super T> predicate);
filter()方法的参数为Predicate(函数式接口)对象,再lambda表达式的讲解中我们提到过这个接口,一般用它进行过滤。正如第二章中示例:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); long count = numbers.parallelStream().filter(i -> i>0).count(); System.out.println("Positive count: " + count); }
用filter方法很容易过滤出整数数组中的自然数。
3.6 reduce()方法
reduce操作又称为折叠操作,用于将流中的所有值合成一个。reduce()方法的源码(不提供计算初始值的reduce方法)(省略注释):
Optionalreduce(BinaryOperator accumulator);
reduce()方法参数为BinaryOperator类型的累加器(它接受两个类型相同的参数,返回值类型跟参数类型相同),返回一个Optional对象。
实际上,Stream API中的mapToInt()方法返回的IntStream接口有类似的 average()、count()、sum()等方法就是做reduce操作,类似的还有mapToLong()、mapToDouble() 方法。当然,我们也可以用reduce()方法来自定义reduce操作。例如我们用reduce()方法来进行整数数组求和操作:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, -1, 4, 5, 1); Integer total = numbers.stream().reduce((t, n) -> t + n).get(); System.out.println("Total: " + total); }
上例中利用reduce()方法结合lambda表达式轻易的实现了数组的求和功能。
3.7 collect()方法
简单看下collect()方法的源码(注释只截取部分):
/** * @paramthe type of the result * @param the intermediate accumulation type of the {@code Collector} * @param collector the {@code Collector} describing the reduction * @return the result of the reduction */ R collect(Collector super T, A, R> collector);
collect()方法的参数为一个java.util.stream.Collector类型对象,可以用java.util.stream.Collectors工具类提供的静态方法来生成,Collectors类实现很多的归约操作,如Collectors.toList()、Collectors.toSet()、Collectors.joining()(joining适用于字符串流)等。看一个简单示例:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); List abss = numbers.stream().map( n -> Math.abs(n)).collect(Collectors.toList()); System.out.println("Abs list: " + abss); }
上例中,用map()方法生成新的流,再用collect()方法返回原数组的绝对值数组。
3.8 summaryStatistics()方法进行数值统计
其实summaryStatistics()方法并不是Stream接口的方法,而是Stream API采用mapToInt()、mapToLong()、mapToDouble()三个方法分别生成IntStream 、LongStream 、DoubleStream 三个接口类型的对象,这个方法的参数分别为3个函数式接口ToIntFunction、ToLongFunction、ToDoubleFunction,使用时可以用lambda表达式计算返回对应的int、long、double类型即可,简单看下这三个方法的源码(省略注释):
IntStream mapToInt(ToIntFunction super T> mapper); LongStream mapToLong(ToLongFunction super T> mapper); DoubleStream mapToDouble(ToDoubleFunction super T> mapper);
IntStream 、LongStream 、DoubleStream 三个接口类型都有一个summaryStatistics()方法,其中,
IntStream 的方法是:
IntSummaryStatistics summaryStatistics();
LongStream 的方法是:
LongSummaryStatistics summaryStatistics();
DoubleStream 的方法是:
DoubleSummaryStatistics summaryStatistics();
在IntSummaryStatistics、LongSummaryStatistics 、DoubleSummaryStatistics 三个接口类型(位于java.util包下)中,都有诸如统计数量、最大值、最小值、求和、平均值等方法(方法名和返回类型可能不同),利用这些方法我们可以方便的进行数值统计。以IntSummaryStatistics工具包 为例:
public static void main(String[] args) { Listnumbers = Arrays.asList(-1, -2, 0, 4, 5); IntSummaryStatistics stats = numbers.stream().mapToInt((x) -> x).summaryStatistics(); System.out.println("Max : " + stats.getMax()); System.out.println("Min : " + stats.getMin()); System.out.println("Sum : " + stats.getSum()); System.out.println("Average : " + stats.getAverage()); System.out.println("Count : " + stats.getCount()); }
3.9 其它方法
Stream API还有一些其它的方法,比如:
limit() 获取指定数量的流
sorted() 对流进行排序
distinct() 去重
skip() 跳过指定数量的元素
peek() 生成一个包含原Stream的所有元素的新Stream,并指定消费函数
count() 计算元素数量
......
四、注意事项
Stream中的操作从概念上讲分为中间操作和终端操作:
中间操作:例如peek()方法提供Consumer(消费)函数,但执行peek()方法时不会执行Consumer函数,而是等到流真正被消费时(终端操作时才进行消费)才会执行,这种操作为中间操作;
终端操作:例如forEach()、collect()、count()等方法会对流中的元素进行消费,并执行指定的消费函数(peek方法提供的消费函数在此时执行),这种操作为终端操作。
要理解中间操作和终端操作的概念,防止埋坑~
14个常用Stream:
1. forEach 循环
@Test public void forEach(){ // 你不鸟我,我也不鸟你 Listlist = Arrays.asList("you", "don't", "bird", "me", ",", "I", "don't", "bird", "you"); // 方式一:JDK1.8之前的循环方式 for (String item: list) { System.out.println(item); } // 方式二:使用Stream的forEach方法 // void forEach(Consumer super T> action) list.stream().forEach(item -> System.out.println(item)); // 方式三:方式二的简化方式 // 由于方法引用也属于函数式接口,所以方式二Lambda表达式也可以使用方法引用来代替 // 此种方式就是方式一、方式二的简写形式 list.stream().forEach(System.out::println); }
2. filter 过滤
public class User { private Long id; private String phone; private Integer age; public User(){} public User(Long id, String username, Integer age) { this.id = id; this.username = username; this.age = age; } // Getter & Setter & toString } @Test public void filter(){ Listusers = Arrays.asList( new User(1L, "mengday", 28), new User(2L, "guoguo", 18), new User(3L, "liangliang", 17) ); // Stream filter(Predicate super T> predicate); users.stream().filter(user -> user.getAge() > 18).forEach(System.out::println); }
3. map 映射
@Test public void map(){ Listlist = Arrays.asList("how", "are", "you", "how", "old", "are", "you", "?"); // Stream map(Function super T, ? extends R> mapper); list.stream().map(item -> item.toUpperCase()).forEach(System.out::println); }
4. flatMap
@Test public void flatMap(){ Lista = Arrays.asList(1, 2, 3); List b = Arrays.asList(4, 5, 6); // Stream flatMap(Function super T, ? extends Stream extends R>> mapper) List > collect = Stream.of(a, b).collect(Collectors.toList()); // [[1, 2, 3], [4, 5, 6]] System.out.println(collect); // 将多个集合中的元素合并成一个集合 List
mergeList = Stream.of(a, b).flatMap(list -> list.stream()).collect(Collectors.toList()); // [1, 2, 3, 4, 5, 6] System.out.println(mergeList); // 通过Builder模式来构建 Stream
5. sorted 排序
@Test public void sort(){ Listlist = Arrays.asList("c", "e", "a", "d", "b"); // Stream sorted(Comparator super T> comparator); // int compare(T o1, T o2); list.stream().sorted((s1, s2) -> s1.compareTo(s2)).forEach(System.out::println); }
6. distinct 去重复
@Test public void distinct(){ // 知之为知之,不知为不知 Streamstream = Stream.of("know", "is", "know", "noknow", "is", "noknow"); stream.distinct().forEach(System.out::println); // know is noknow }
7. count 总数量
@Test public void count(){ Streamstream = Stream.of("know", "is", "know", "noknow", "is", "noknow"); long count = stream.count(); System.out.println(count); }
8. min、max
@Test public void min(){ Listlist = Arrays.asList("1", "2", "3", "4", "5"); // Optional min(Comparator super T> comparator); Optional optional = list.stream().min((a, b) -> a.compareTo(b)); String value = optional.get(); System.out.println(value); }
9. skip、limit
@Test public void skip(){ Listlist = Arrays.asList("a", "b", "c", "d", "e"); // Stream skip(long n) list.stream().skip(2).forEach(System.out::println); // c、d、e } @Test public void limit(){ List list = Arrays.asList("a", "b", "c", "d", "e"); list.stream().skip(2).limit(2).forEach(System.out::println); // c、d }
10. collect
@Test public void collect(){ Listlist = Arrays.asList("a", "b", "c", "d", "e"); // Stream -> Collection List collect = list.stream().collect(Collectors.toList()); // Stream -> Object[] Object[] objects = list.stream().toArray(); }
11. concat
@Test public void concat(){ Listlist = Arrays.asList("a", "b"); List list2 = Arrays.asList("c", "d"); Stream concatStream = Stream.concat(list.stream(), list2.stream()); concatStream.forEach(System.out::println); }
12. anyMatch、allMatch
@Test public void match(){ // 你给我站住 Listlist = Arrays.asList("you", "give", "me", "stop"); // boolean anyMatch(Predicate super T> predicate); // parallelStream可以并行计算,速度比stream更快 boolean result = list.parallelStream().anyMatch(item -> item.equals("me")); System.out.println(result); } /** * anyMatch伪代码 * 如果集合中有一个元素满足条件就返回true * @return */ public boolean anyMatch() { List list = Arrays.asList("you", "give", "me", "stop"); for (String item : list) { if (item.equals("me")) { return true; } } return false; }
13. reduce 归纳
@Test public void reduce(){ Streamstream = Stream.of("you", "give", "me", "stop"); // Optional reduce(BinaryOperator accumulator); Optional optional = stream.reduce((before, after) -> before + "," + after); optional.ifPresent(System.out::println); // you,give,me,stop }
BigDecimal求和
public static void main(String[] args) { Listlist = Arrays.asList( new BigDecimal("11.11"), new BigDecimal("22.22"), new BigDecimal("33.33") ); // 66.66 BigDecimal sum = list.stream().reduce(BigDecimal.ZERO, BigDecimal::add); System.out.println(sum); }
14. findFirst、findAny
@Test public void findFirst(){ Streamstream = Stream.of("you", "give", "me", "stop"); String value = stream.findFirst().get(); System.out.println(value); } @Test public void findAny(){ Stream stream = Stream.of("you", "give", "me", "stop"); String value2 = stream.findAny().get(); System.out.println(value2); }
“java8的Stream特性是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
分享标题:java8的Stream特性是什么
路径分享:http://pwwzsj.com/article/jppejj.html