怎样理解Python线程池
本篇文章给大家分享的是有关怎样理解Python线程池,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
网站建设哪家好,找创新互联公司!专注于网页设计、网站建设、微信开发、成都小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了隆德免费建站欢迎大家使用!
总结一下自己总结的对Python线程池经验之谈,对于那些没有接触学习过编程语言或者多开发语言略懂的用户而言,Python语言是绝对的选择之一,并建议初学的程序员先从Python开始学习编程。
import Queue, threading, sys from threading import Thread import time,urllib # working thread class Worker(Thread): worker_count = 0 def __init__( self, workQueue, resultQueue, timeout = 0, **kwds): Thread.__init__( self, **kwds ) self.id = Worker.worker_count Worker.worker_count += 1 self.setDaemon( True ) self.workQueue = workQueue self.resultQueue = resultQueue self.timeout = timeout self.start( ) def run( self ): ''' the get-some-work, do-some-work main loop of worker threads ''' while True: try: callable, args, kwds = self.workQueue.get(timeout=self.timeout) res = callable(*args, **kwds) print "worker[%2d]: %s" % (self.id, str(res) ) self.resultQueue.put( res ) except Queue.Empty: break except : print 'worker[%2d]' % self.id, sys.exc_info()[:2] class WorkerManager: def __init__( self, num_of_workers=10, timeout = 1): self.workQueue = Queue.Queue() self.resultQueue = Queue.Queue() self.workers = [] self.timeout = timeout self._recruitThreads( num_of_workers ) def _recruitThreads( self, num_of_workers ): for i in range( num_of_workers ): worker = Worker( self.workQueue, self.resultQueue, self.timeout ) self.workers.append(worker) def wait_for_complete( self): # ...then, wait for each of them to terminate: while len(self.workers): worker = self.workers.pop() worker.join( ) if worker.isAlive() and not self.workQueue.empty(): self.workers.append( worker ) print "All jobs are are completed." def add_job( self, callable, *args, **kwds ): self.workQueue.put( (callable, args, kwds) ) def get_result( self, *args, **kwds ): return self.resultQueue.get( *args, **kwds )
Worker类是一个Python线程池,不断地从workQueue队列中获取需要执行的任务,执行之,并将结果写入到resultQueue中。这里的workQueue和resultQueue都是现成安全的,其内部对各个线程的操作做了互斥。当从workQueue中获取任务超时,则线程结束。
WorkerManager负责初始化Python线程池,提供将任务加入队列和获取结果的接口,并能等待所有任务完成。一个典型的测试例子如下,它用10个线程去下载一个固定页面的内容,实际应用时应该是执行不同的任务。
def test_job(id, sleep = 0.001 ): try: urllib.urlopen('[url]https://www.gmail.com/[/url]').read() except: print '[%4d]' % id, sys.exc_info()[:2] return id def test(): import socket socket.setdefaulttimeout(10) print 'start testing' wm = WorkerManager(10) for i in range(500): wm.add_job( test_job, i, i*0.001 ) wm.wait_for_complete() print 'end testing'
以上就是怎样理解Python线程池,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。
新闻标题:怎样理解Python线程池
URL地址:http://pwwzsj.com/article/jsdoge.html