Flink如何实现双流join

这篇文章给大家分享的是有关Flink如何实现双流 join的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

成都创新互联-专业网站定制、快速模板网站建设、高性价比城中网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式城中网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖城中地区。费用合理售后完善,十余年实体公司更值得信赖。

在数据库中的静态表上做 OLAP 分析时,两表 join 是非常常见的操作。同理,在流式处理作业中,有时也需要在两条流上做 join 以获得更丰富的信息。Flink DataStream API 为用户提供了3个算子来实现双流 join,分别是:

  • join()

  • coGroup()

  • intervalJoin()

准备数据

从 Kafka 分别接入点击流和订单流,并转化为 POJO。

DataStream clickSourceStream = env
  .addSource(new FlinkKafkaConsumer011<>(
    "ods_analytics_access_log",
    new SimpleStringSchema(),
    kafkaProps
  ).setStartFromLatest());
DataStream orderSourceStream = env
  .addSource(new FlinkKafkaConsumer011<>(
    "ods_ms_order_done",
    new SimpleStringSchema(),
    kafkaProps
  ).setStartFromLatest());

DataStream clickRecordStream = clickSourceStream
  .map(message -> JSON.parseObject(message, AnalyticsAccessLogRecord.class));
DataStream orderRecordStream = orderSourceStream
  .map(message -> JSON.parseObject(message, OrderDoneLogRecord.class));

join()

join() 算子提供的语义为"Window join",即按照指定字段和(滚动/滑动/会话)窗口进行 inner join,支持处理时间和事件时间两种时间特征。以下示例以10秒滚动窗口,将两个流通过商品 ID 关联,取得订单流中的售价相关字段。

Flink如何实现双流 join

clickRecordStream
  .join(orderRecordStream)
  .where(record -> record.getMerchandiseId())
  .equalTo(record -> record.getMerchandiseId())
  .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
  .apply(new JoinFunction() {
    @Override
    public String join(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord) throws Exception {
      return StringUtils.join(Arrays.asList(
        accessRecord.getMerchandiseId(),
        orderRecord.getPrice(),
        orderRecord.getCouponMoney(),
        orderRecord.getRebateAmount()
      ), '\t');
    }
  })
  .print().setParallelism(1);

简单易用。

coGroup()

只有 inner join 肯定还不够,如何实现 left/right outer join 呢?答案就是利用 coGroup() 算子。它的调用方式类似于 join() 算子,也需要开窗,但是 CoGroupFunction 比 JoinFunction 更加灵活,可以按照用户指定的逻辑匹配左流和/或右流的数据并输出。

以下的例子就实现了点击流 left join 订单流的功能,是很朴素的 nested loop join 思想(二重循环)。

clickRecordStream
  .coGroup(orderRecordStream)
  .where(record -> record.getMerchandiseId())
  .equalTo(record -> record.getMerchandiseId())
  .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
  .apply(new CoGroupFunction>() {
    @Override
    public void coGroup(Iterable accessRecords, Iterable orderRecords, Collector> collector) throws Exception {
      for (AnalyticsAccessLogRecord accessRecord : accessRecords) {
        boolean isMatched = false;
        for (OrderDoneLogRecord orderRecord : orderRecords) {
          // 右流中有对应的记录
          collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice()));
          isMatched = true;
        }
        if (!isMatched) {
          // 右流中没有对应的记录
          collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null));
        }
      }
    }
  })
  .print().setParallelism(1);

intervalJoin()

join() 和 coGroup() 都是基于窗口做关联的。但是在某些情况下,两条流的数据步调未必一致。例如,订单流的数据有可能在点击流的购买动作发生之后很久才被写入,如果用窗口来圈定,很容易 join 不上。所以 Flink 又提供了"Interval join"的语义,按照指定字段以及右流相对左流偏移的时间区间进行关联,即:

right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]

Flink如何实现双流 join

interval join 也是 inner join,虽然不需要开窗,但是需要用户指定偏移区间的上下界,并且只支持事件时间。

示例代码如下。注意在运行之前,需要分别在两个流上应用 assignTimestampsAndWatermarks() 方法获取事件时间戳和水印。

clickRecordStream
  .keyBy(record -> record.getMerchandiseId())
  .intervalJoin(orderRecordStream.keyBy(record -> record.getMerchandiseId()))
  .between(Time.seconds(-30), Time.seconds(30))
  .process(new ProcessJoinFunction() {
    @Override
    public void processElement(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord, Context context, Collector collector) throws Exception {
      collector.collect(StringUtils.join(Arrays.asList(
        accessRecord.getMerchandiseId(),
        orderRecord.getPrice(),
        orderRecord.getCouponMoney(),
        orderRecord.getRebateAmount()
      ), '\t'));
    }
  })
  .print().setParallelism(1);

由上可见,interval join 与 window join 不同,是两个 KeyedStream 之上的操作,并且需要调用 between() 方法指定偏移区间的上下界。如果想令上下界是开区间,可以调用 upperBoundExclusive()/lowerBoundExclusive() 方法。

interval join 的实现原理

以下是 KeyedStream.process(ProcessJoinFunction) 方法调用的重载方法的逻辑。

public  SingleOutputStreamOperator process(
        ProcessJoinFunction processJoinFunction,
        TypeInformation outputType) {
    Preconditions.checkNotNull(processJoinFunction);
    Preconditions.checkNotNull(outputType);
    final ProcessJoinFunction cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);
    final IntervalJoinOperator operator =
        new IntervalJoinOperator<>(
            lowerBound,
            upperBound,
            lowerBoundInclusive,
            upperBoundInclusive,
            left.getType().createSerializer(left.getExecutionConfig()),
            right.getType().createSerializer(right.getExecutionConfig()),
            cleanedUdf
        );
    return left
        .connect(right)
        .keyBy(keySelector1, keySelector2)
        .transform("Interval Join", outputType, operator);
}

可见是先对两条流执行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子进行转换。在 IntervalJoinOperator 中,会利用两个 MapState 分别缓存左流和右流的数据。

private transient MapState>> leftBuffer;
private transient MapState>> rightBuffer;

@Override
public void initializeState(StateInitializationContext context) throws Exception {
    super.initializeState(context);
    this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        LEFT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))
    ));
    this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        RIGHT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))
    ));
}

其中 Long 表示事件时间戳,List> 表示该时刻到来的数据记录。当左流和右流有数据到达时,会分别调用 processElement1() 和 processElement2() 方法,它们都调用了 processElement() 方法,代码如下。

@Override
public void processElement1(StreamRecord record) throws Exception {
    processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
}

@Override
public void processElement2(StreamRecord record) throws Exception {
    processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
}

@SuppressWarnings("unchecked")
private  void processElement(
        final StreamRecord record,
        final MapState>> ourBuffer,
        final MapState>> otherBuffer,
        final long relativeLowerBound,
        final long relativeUpperBound,
        final boolean isLeft) throws Exception {
    final THIS ourValue = record.getValue();
    final long ourTimestamp = record.getTimestamp();
    if (ourTimestamp == Long.MIN_VALUE) {
        throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
                "interval stream joins need to have timestamps meaningful timestamps.");
    }
    if (isLate(ourTimestamp)) {
        return;
    }
    addToBuffer(ourBuffer, ourValue, ourTimestamp);
    for (Map.Entry>> bucket: otherBuffer.entries()) {
        final long timestamp  = bucket.getKey();
        if (timestamp < ourTimestamp + relativeLowerBound ||
                timestamp > ourTimestamp + relativeUpperBound) {
            continue;
        }
        for (BufferEntry entry: bucket.getValue()) {
            if (isLeft) {
                collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
            } else {
                collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
            }
        }
    }
    long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
    if (isLeft) {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
    } else {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
    }
}

这段代码的思路是:

  1. 取得当前流 StreamRecord 的时间戳,调用 isLate() 方法判断它是否是迟到数据(即时间戳小于当前水印值),如是则丢弃。

  2. 调用 addToBuffer() 方法,将时间戳和数据一起插入当前流对应的 MapState。

  3. 遍历另外一个流的 MapState,如果数据满足前述的时间区间条件,则调用 collect() 方法将该条数据投递给用户定义的 ProcessJoinFunction 进行处理。collect() 方法的代码如下,注意结果对应的时间戳是左右流时间戳里较大的那个。

private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {
    final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);
    collector.setAbsoluteTimestamp(resultTimestamp);
    context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);
    userFunction.processElement(left, right, context, collector);
}
  1. 调用 TimerService.registerEventTimeTimer() 注册时间戳为 timestamp + relativeUpperBound 的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的 namespace 是不同的,具体逻辑则位于 onEventTime() 方法中。

@Override
public void onEventTime(InternalTimer timer) throws Exception {
    long timerTimestamp = timer.getTimestamp();
    String namespace = timer.getNamespace();
    logger.trace("onEventTime @ {}", timerTimestamp);
    switch (namespace) {
        case CLEANUP_NAMESPACE_LEFT: {
            long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;
            logger.trace("Removing from left buffer @ {}", timestamp);
            leftBuffer.remove(timestamp);
            break;
        }
        case CLEANUP_NAMESPACE_RIGHT: {
            long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;
            logger.trace("Removing from right buffer @ {}", timestamp);
            rightBuffer.remove(timestamp);
            break;
        }
        default:
            throw new RuntimeException("Invalid namespace " + namespace);
    }
}

感谢各位的阅读!关于“Flink如何实现双流 join”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


文章名称:Flink如何实现双流join
URL网址:http://pwwzsj.com/article/jsecip.html