Pandas怎么操作CSV文件-创新互联

Pandas怎么操作CSV文件?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

创新互联主要从事成都网站建设、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务昌吉,十载网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220

(1)、导库

import pandas as pd
from pandas import Series

(2)、读取csv文件的两种方式

#读取csv文件的两种方式
f = open('E:/建模/第5周/data/ex1.csv') #方法一
df = pd.read_csv(f)
print(df)
f.close

f = open('E:/建模/第5周/data/ex1.csv') #方法二,必须指定分隔符为',',否则会读取失败
df = pd.read_table(f,sep=',')
print(df)
f.close

(2)、根据需要条件读取csv文件

#根据需要条件读取csv文件
f = open('E:/建模/第5周/data/csv_mindex.csv') 
df = pd.read_csv(f,header=None)   #不需要表头
df = pd.read_csv(f,names=['a','b','c','d','message'])  #添加表头
df = pd.read_csv(f,names=['a','b','c','d','message'],index_col = 'message')  #指定某一列作为行索引
df = pd.read_csv(f,index_col = ['key1','key2'])  #指定多列作为行索引
print(df)
f.close

(3)、利用正则表达式读取不同含有不同分隔符的文件

#利用正则表达式读取不同含有不同分隔符的文件
f = open('E:/建模/第5周/data/ex3.txt') 
df = pd.read_table(f,sep='\s+')
print(df)

(4)、根据需要选择需要读的行

#根据需要选择需要读的行
f = open('E:/建模/第5周/data/ex4.csv') 
df = pd.read_table(f,sep=',',skiprows=[0,2,3]) #跳过不想读的行
print(df)

(5)、处理缺失值

#处理缺失值
f = open('E:/建模/第5周/data/ex5.csv') 
df = pd.read_table(f,sep=',',na_values='world') #如果数据中有'world',也会视为缺失值
print(df)

(6)、逐行读取文件

#逐行读取文件
f = open('E:/建模/第5周/data/ex6.csv') 
df = pd.read_table(f,sep=',',nrows=5) #只读取前面5行
print(df)

(7)、将dataframe数据写入csv文件

#将dataframe数据写入csv文件
f = open('E:/建模/第5周/data/ex5.csv') 
data = pd.read_csv(f)
data.to_csv('E:/建模/第5周/data/out.csv')  #将dataframe输出到csv文件中
data.to_csv('E:/建模/第5周/data/out.csv',na_rep='ok')  #将缺失值补上‘ok'
data.to_csv('E:/建模/第5周/data/out.csv',header=None)  #不设置表头
data.to_csv('E:/建模/第5周/data/out.csv',columns=['a','b'])  #写出指定的列

(8)、将csv文件读取位Series

#将csv文件读取位Series
f = open('E:/建模/第5周/data/tseries.csv') 
series = Series.from_csv(f,parse_dates=True)
print(series)

看完上述内容,你们掌握Pandas怎么操作CSV文件的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


文章标题:Pandas怎么操作CSV文件-创新互联
文章网址:http://pwwzsj.com/article/pdpij.html