flink读取hive的数据
flink1.8 对hive 的支持不够好,造成300W的数据,居然读了2个小时,打算将程序迁移至spark。 先把代码贴上。 后发现sql不应该有where条件,去掉后速度还行。
专注于为中小企业提供成都网站设计、网站建设、外贸网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业南城免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
maven
org.apache.hive
hive-jdbc
1.1.0
org.apache.hadoop
hadoop-common
3.1.2
jdk.tools
jdk.tools
1.8
system
${JAVA_HOME}/lib/tools.jar
java
private final static String driverName = "org.apache.hive.jdbc.HiveDriver";// jdbc驱动路径
private final static String url = ";";// hive库地址+库名
private final static String user = "";// 用户名
private final static String password = "!";// 密码
private final static String table="";
private final static String sql = " ";
public static void main(String[] arg) throws Exception {
long time=System.currentTimeMillis();
HttpClientUtil.sendDingMessage("开始同步hive-"+table+";"+Utils.getTimeString());
/**
* 初始化环境
*/
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4);
try {
TypeInformation[] types = new TypeInformation[]{BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO};
String[] colName = new String[]{"user","name"};
RowTypeInfo rowTypeInfo = new RowTypeInfo(types, colName);
JDBCInputFormatBuilder builder = JDBCInputFormat.buildJDBCInputFormat().setDrivername(driverName)
.setDBUrl(url)
.setUsername(user).setPassword(password);
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date());
calendar.add(Calendar.DATE, -1); //用昨天产出的数据
SimpleDateFormat sj = new SimpleDateFormat("yyyyMMdd");
String d=sj.format(calendar.getTime());
JDBCInputFormat jdbcInputFormat = builder.setQuery(sql+" and dt='"+d+"' limit 100000000").setRowTypeInfo(rowTypeInfo).finish();
DataSource rowlist = env.createInput(jdbcInputFormat);
DataSet temp= rowlist.filter(new FilterFunction(){
@Override
public boolean filter(Row row) throws Exception {
String key=row.getField(0).toString();
String value=row.getField(1).toString();
if(key.length()<5 || key.startsWith("-") || key.startsWith("$") || value.length()<5 || value.startsWith("-") || value.startsWith("$")) {
return false;
}else {
return true;
}
}
}).map(new MapFunction(){
@Override
public RedisDataModel map(Row value) throws Exception {
RedisDataModel m=new RedisDataModel();
m.setExpire(-1);
m.setKey(JobConstants.REDIS_FLINK_IMEI_USER+value.getField(0).toString());
m.setGlobal(true);
m.setValue(value.getField(1).toString());
return m;
}
});
HttpClientUtil.sendDingMessage("同步hive-"+table+"完成;开始推送模型,共有"+temp.count()+"条;"+Utils.getTimeString());
RedisOutputFormat redisOutput = RedisOutputFormat.buildRedisOutputFormat()
.setHostMaster(AppConfig.getProperty(JobConstants.REDIS_HOST_MASTER))
.setHostSentinel(AppConfig.getProperty(JobConstants.REDIS_HOST_SENTINELS))
.setMaxIdle(Integer.parseInt(AppConfig.getProperty(JobConstants.REDIS_MAXIDLE)))
.setMaxTotal(Integer.parseInt(AppConfig.getProperty(JobConstants.REDIS_MAXTOTAL)))
.setMaxWaitMillis(Integer.parseInt(AppConfig.getProperty(JobConstants.REDIS_MAXWAITMILLIS)))
.setTestOnBorrow(Boolean.parseBoolean(AppConfig.getProperty(JobConstants.REDIS_TESTONBORROW)))
.finish();
temp.output(redisOutput);
env.execute("hive-"+table+" sync");
HttpClientUtil.sendDingMessage("同步hive-"+table+"完成,耗时:"+(System.currentTimeMillis()-time)/1000+"s");
} catch (Exception e) {
logger.error("",e);
HttpClientUtil.sendDingMessage("同步hive-"+table+"失败,时间戳:"+time+",原因:"+e.toString());
}
当前名称:flink读取hive的数据
当前网址:http://pwwzsj.com/article/pdsgjh.html