pandas函数如何在python中使用

pandas函数如何在python中使用?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

成都创新互联是一家集网站建设,芦淞企业网站建设,芦淞品牌网站建设,网站定制,芦淞网站建设报价,网络营销,网络优化,芦淞网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

Python主要用来做什么

Python主要应用于:1、Web开发;2、数据科学研究;3、网络爬虫;4、嵌入式应用开发;5、游戏开发;6、桌面应用开发。

1、导⼊数据

pd.DataFrame() # 自己创建数据框,用于练习
pd.read_csv(filename) # 从CSV⽂件导⼊数据
pd.read_table(filename) # 从限定分隔符的⽂本⽂件导⼊数据
pd.read_excel(filename) # 从Excel⽂件导⼊数据
pd.read_sql(query,connection_object) # 从SQL表/库导⼊数据
pd.read_json(json_string) # 从JSON格式的字符串导⼊数据
pd.read_html(url) # 解析URL、字符串或者HTML⽂件,抽取其中的tables表格

2、查看数据

df.head(n) # 查看DataFrame对象的前n⾏
df.tail(n) # 查看DataFrame对象的最后n⾏
df.shape() # 查看⾏数和列数
df.info() # 查看索引、数据类型和内存信息
df.columns() # 查看字段(⾸⾏)名称
df.describe() # 查看数值型列的汇总统计
s.value_counts(dropna=False) # 查看Series对象的唯⼀值和计数
df.apply(pd.Series.value_counts) # 查看DataFrame对象中每⼀列的唯⼀值和计数
df.isnull().any() # 查看是否有缺失值
df[df[column_name].duplicated()] # 查看column_name字段数据重复的数据信息
df[df[column_name].duplicated()].count() # 查看column_name字段数据重复的个数

3、数据分组、排序、透视

df.sort_index().loc[:5] # 对前5条数据进⾏索引排序
df.sort_values(col1) # 按照列col1排序数据,默认升序排列
df.sort_values(col2,ascending=False) # 按照列col1降序排列数据
df.sort_values([col1,col2],ascending=[True,False]) # 先按列col1升序排列,后按col2降序排列数据
df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象
df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象
df.groupby(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean])
df.pivot_table(index=col1,values=[col2,col3],aggfunc={col2:max,col3:[ma,min]}) # 创建⼀个按列col1进⾏分组,计算col2的最⼤值和col3的最⼤值、最⼩值的数据透视表
df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持
df.groupby(col1).col2.agg(['min','max'])
data.apply(np.mean) # 对DataFrame中的每⼀列应⽤函数np.mean
data.apply(np.max,axis=1) # 对DataFrame中的每⼀⾏应⽤函数np.max
df.groupby(col1).col2.transform("sum") # 通常与groupby连⽤,避免索引更改

关于pandas函数如何在python中使用问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


本文标题:pandas函数如何在python中使用
文章链接:http://pwwzsj.com/article/pecjoj.html